RUG3
TECHNICAL MANUAL

Version 2.05A

Rugid Computer
6305 Elizan Dr. NW
Olympia, WA 98502
360-866-4492, Fax 360-866-8074
Web site: www.rugidcomputer.com
email: support@rugidcomputer.com

TABLE OF CONTENTS

LSt OF TADIES ...ttt b ettt b e s bbbt e h e st et et et bt bbbt st et et e 10
CHAPTER 1...INTRODUCTION ...ttt sttt sttt sttt ettt s s be st ebe e ee 11
Minimum Equipment REQUITEAcc.oeiuieiieieiierieieeie ettt eete e ssae e e nneenseenneens 11
FaCOTY SUPPOTL ...ciiiiieiie ettt ettt et e b bt e bt e bt e et e s bt e e bt e sabeesabeesabaeenneean 11
CHAPTER 2...GETTING STARTED........coctitititiiiiere ettt 13
54130 Ta L To7 5o o LSRR 13
Installing RUG3 SUPPOIT SOTEWATE........c.eiiuiitieiieiieie ettt ettt ettt e e ae e ene 13
Applying Power to the RUGS ..ottt 14
Preparing to Communicate with the RUG3 ...t 15
RUG3 BASIC OPERATION ...ttt ettt ettt st ae bt e st et ente st e besbeebeeneensennens 15
Configuring the RUGScoiiiiiiiieiicieetectetett ettt sttt steeste et e esbeesbasssesssesseenseenseensennes 16
The RUG3 MENU SYSTEIMeeuviiieiieiieteeeieeteesteeteeteeetesaesteesseessesssesseesseesseesseessesssesssesseessesssessessesssesses 17
ACCESSING DISPIAYS....ecuiiieiieiiiiieiieie ettt et et rteete st e stee s st e bt esseesseessesseessaesseessesssesseesseesssesseesessenns 17
Accessing Setpoints Using Serial POTtS..........ccoooieiiieiinienieieieeiesereee ettt ens 18
Accessing Setpoints Using the 2X16 LCD:........ccooiiiriiriieiieieeeeeeee ettt enee e 18
Log@ing On FOr SEtPOINt ACCESS......uerierrieriieieeieriertieteeteetesseesseesseesessessaesseesseesesssesssesseesseesseesseens 18
Log@ing Off SEtPOINt ACCESSeoveevieiieieeieiie ettt ettt e tte st et et e e et e sseesseesaeeseeeesneesseesseenaeeneeens 18
Setting the Clock Calendar..........cc.oiiiiiiiiiieeee ettt ettt ettt eneesseeseeas 19
AdJUStINg LECD CONIASE....c..eietietieteeieeie ettt sttt ete et e esee et e te et es e eneesseesseeseenseeneesneesseesseenseanseans 19

A SIMPIE APPIICALION ...ttt ettt et et e b e ta e te e beesbeesseessesseesseesseessesssessesseesseesseenns 19
Specifying RUG3 HarAWAare.c.ooieiieriiiieiie ettt ettt sttt et et seeesbeenaeas 19
Specifying [/O ASSIZNIMENESccuiiueitirtietieiiet ettt ettt et e et e stetesteebesseeseeseensensessesesaeeseeneensaneens 20
SEHNG UP SEIPOINES ...veeuvieerieeieiiieitieieete ettt ete et esteeseebeestesteesseeseessesssesseesseesseesseasseessesssessenssesssesseessees 25
Connecting Modules TOZENETccveiieiieieiieieeie ettt ettt esseesaeseaesseesseesseeneeees 27
LCD DiSPIAY SEUD....ecuvievieeiietieitieitieieeieetestesteesteesesssesseesseesseesseessaessesssessaesseessaessesssesssesseesseessesssenns 31
SAVING the PTOJECT....ecueiiiieiieiieiieie ettt ettt et et e s et e et e eseenaesneesseenseenseenseensesssessnenseas 34
ComPIlINg the PIOJECL.......eiiiiieiieii ettt ettt ettt et e st et e et e esaessaesseeseenseensesnneenns 34
CHAPTER 3.. . HARDWAREooiiit ettt ettt st 37
OVEIVIEW-RUGS ...ttt ettt e b ettt et e at e s et e s st et e et e enteeneeeseeane e seeseeneeeneeens 37
Mounting on DIN Rail.......ccooiiiiiii ettt ettt e b e bt e beeae e ens 40
Removing from DIN Ta1looiiiiiiiie ettt ettt et 40
Applying Power to the RUGS ..ottt sbe st e e e 40
Display/Keyboard INTETTACE.cciiiiiiieiieiee ettt ettt ae et e e e nnens 42
RESEE BUTLOM ...eniiiiteee ettt ettt et sttt e be e b e bt e e e e 42
RIS232 POTES ..ottt ettt ettt h e bt e h e st e st e et e bt eb e eh e bt e h e e st et et ettt e b eheebe et etetens 42
UUSB POT ettt h bt a et e e b e e bt e bt bt e st et e et et e b sh e bt eae bt et et nee 43
INStAlling USB DIIVETSccuveiiieiieieetietesiiestteieeteetesetesstesseeseessesssesseesseesseenseanseessesssanseeseenseesennsesnsesnns 43
2 Y LY (51010 o7 SRR 43
Changing the BatterYccveiuieiiiiie ettt ettt ettt e st et e enteentessbenseesseenseenseensesnnennes 43
Removing the Board from it Case........c.eeiuiriirieiieiieieee ettt ettt e e e eee 43
Installing the Board into the Case..........ceeouieiieieiieiiee ettt be e 44
0 T0] BN 11 o] 2SSOSR 44
DAL INPULS ...ttt ettt h e s bt et e bt eat e e bt e sb e e sbeenb e e bt ebeeneeeneenas 44
REIAY OULPULS ...ttt b ettt ettt sht e s b e et e emt e ea b e eu e sb e e nbe e beebeemaeeaeeeae 45
ANALOZ TIPULS ...ttt ettt ettt e bt ea e e st et e e eb e et e e bt ebeea e en e en b e et e te bt sheebeeneeneeneennan 46
Modem/RS232/RS4A85 CRANNELc.oouiiiiiiiiiieiieieee ettt sttt 48
ANalog OULPULS (OPLIONAL) ...ecuviieiiiiiiiieiieeie ettt ettt ettt e e aesaesreesseesseesseessessseseesseeseenseessennns 49
CHAPTER 4...USING RUG3 SUPPORT SOFTWARE........cocoiiiiiiiiiieeeeee e 53
INEEOAUCTION ...ttt et ettt b e bbbt et et e et st s b ebeebtentennenaens 53
Procedure for Setting Up @ PrOJECt........cvoviiriieiieiieieeesetee ettt ae e e 53
Starting R3SETUP Design ENVIIONMENL.cc.ooiiiieiieiieieeieciesit ettt 54
J 010 0 2 SRR 54
Loading an EXiStNG PrOJECLc.ieiiitieitieiieie ettt sttt ettt ettt e st esseeae e e enee e 55

SAVING @ PIOJECE....cuviiiiiiieiieeiiecttete ettt et ettt et et e e e esbessaesseesbeesseessesseesssenseenseessensseessenssensens 55

Configuring I/O MOGUIESooviiieriieiieiieie ettt esteeteeae st esteeste e st esbessaestseseesseessesssesssesseenseessesssenses 55
Data BASES ..ottt et ettt et ettt et eae e nae 57
Adding @ ModUIE t0 @ PIOJECT.......ecoviiieieieiieit ettt ettt ettt e et e ssa e seenseenseenneens 58
NAMING 8 MOAUIC ...ttt st sttt et e et et aebeenseesbesnaessaesseesseenseanseans 60
Connecting Modules TOZENETocuiiiieiieieiee ettt st sbe e e e 60
IMOAUIE TNPULS......eeeetiett ettt ettt ettt e et e st e e et e s e es e e sseesseeseenseeneesneesneenseeneenneens 61
443 USSR 61
Listing Modules in the PrOJECT........co.iiiiiieieieieee ettt sttt e e 61
Modifying an EXiSting MOAUIE.cc.eeuiiiiiiieieee ettt st 62
Copying (Cloning) @ MOAUIE.......cc.eouieuiiieieieee ettt ettt ettt e sbesbe b et ese e st eneeeeneas 62
Deleting a Module from the ProOJECtcccuiiiiiiiiiciiciieieeestteee e see s ense e 62
Searching for Where a Module’s Outputs are USEdc.cccverierieriieniiiieiienieie et eee e eveevesene e 62
Returning to the Setup I/O Panel..........cc.oovieiiiiiniieicee et 63
Configuring RUG3 DISPLaYSccuveriieiieiieiieiiesiieieeie et steste st esteeteetesetessee st eenseenseensesssesseenseensesnsesnsennns 64
Designing a Display for the LCDc.oooiiiiiiieieeee ettt s se e eneeens 66
ComPIlINg the PIOJECTeieiiieieie ettt ettt ettt et e et e st e s b e b e neenaeeneeens 66
Sending the Program to the RUGSoooiiiiiieeeee et 66
Opening the Terminal PAZEccooiuiiiiiiiieieec ettt 67
Sending the Operating System to the RUG3cooiiiiiiiiiii e 67
Sending the PC’s Realtime Clock to the RUGScooiiiiiiiiiiie e 68
Stopping the RUG3’S PrOGIAIMN.......c.coiiiiiiiieitietieieettei ettt ettt st ae st eseeneensenaens 68
Observing Program EXECULION.ccuerieriieieiieiiestteieetesee sttt eaeeaeeetesteesseesseesseessesssesseesseessesssesssenses 68
Documenting YOUT PrOJEC.......ccviiiiiiieiieiietiestieieete ettt steete e st saeesteeseenseesbeesbesssessaesseenseensesssennns 68
Setting PC Communications POrt Parameterscoecverierieriieciiiienieseesie e eeesieesseeseesseessessnessees 69
Setting File Paths and Controlling SOTTINGccveviieeiieieiierieeee ettt enaesseennees 70
CHAPTER 5...SOFTWARE MODULESc.ooottiiiiminiiieteetentete sttt sttt 71
INEEOAUCTION ...ttt ettt ettt b e s bt b e bbb et et e e st s b sbeebe et enneneens 71
TYPICAL MOAUIE SETUD ..ttt ettt sttt ettt et ese e bt et et e enteeneeeneesseeaeeneeeneeenes 71
NAMING 8 MOAUIE ...ttt ettt et e et e bt e e et e eseesneesseesaeenaeaneeans 71
SPECITYING INPULS ...ttt ettt ettt et e s bt e te e bt e teeneeeaee s st e teenseenseeneesseennean 72
I/O IMOUIES.. ...ttt ettt e et s et et e e bt ee e ebeeaeess et et e abeeaeebeeseeneeneensenens 73
ANALOZINPUL. ..ttt et ettt b e bt e bt et et e e st e sbeesatesbeenbe e teenteens 73
ANALOZOULPULovvieiiieiieiieeiieetteet ettt et e st este e te e bt sstesteesseesseesseesseessasssessaesseesseessesssesssessseseenseessenns 74
ADICINOIMIETET ..c.eniiiiiiiitiriteettet ettt ettt ettt et ettt sbt e s bt e s bt et e e st e eat e ee s e eusesbee bt enbeesaeeaeesbeesbeenbeenteenneenn 74
DIINCOUNT ...ttt ettt ettt et e e e e s teeste e beesbeesseeseesseesseessaessesssesssesseesseesseensesssesssesseensennseans 75
Digital AIATMOULPUL.......eouieiietieiieieee ettt ettt et e e estee st e teenseessesnsessaesseesseenseenseensesseenseenseanseens 76
DigitalINPUIDC ..ottt et ettt et e e et e e s e seteesa e re e seenbeennesnaeeneenseeteenseens 76
DIGIAIOULPUL. ..ottt ettt et et st e et e s st et e esseenseesseessessaesseenseensesnsesnsesseenseanseenseans 77

L€ 111 BT Y1 10 (SRS 77
PULSEDUIATIONIIttt et et ettt et e e et e s b e bt e teebe et e sneeeneenne e aeenneens 78
PUlSEDUIATIONOUL ...ttt ettt ettt et e ettt et es e es e e b e e bt enseeneesneesneesneesneenseeneeans 78
PUISETOFLOW ...ttt ettt ettt e et et s bt eae e st enten e e s et e sbeeeeebeeseeneeneansenes 79

N T4 010111 SRR PRSI UPRRRPPRROt 80
ShaftENCOAEIINPUL.......ccviiitiiiieiieiecie ettt ettt ettt ta e te e te e beesbeeseeeseesseesseenseesseessenssesenas 81
N 11101 o OO OO O PRSPPIt 82
IMAH IMOAUIES. ...ttt ettt et ettt b e bbbt e st et et et sbe bt e beebeebe et et etens 83
BIESTONUITIETIC ..ottt ettt ettt b e eb e bt ettt et b e s bt e bt e bt eb b et et enbe st e ebesbeene et ente e 83
COMSTANT ...ttt ettt et et ettt e b et e e e ane st satesbeemaeeaseeaeeeueesbe et s esbeebeenneenneeanenae 83
COSIME ...ttt ettt h ettt et b e bt bbbt e et bbbt e bt bt et et e b et bbbt e ae e st et enten 84
FLOAtTOINEEZET ...eevveenee ettt ettt ettt st et et e e e st e s st e st esseesseense et ee s eenseenseansesnsesneesnsesneaseenseanseans 84
FLOWAGAS ..ottt ettt ettt ettt e st e s et et e et e et e estentess e s e s e aseeseeseentensensansesseeseaseeneeneensansenes 85
FLOWCTPOIIETIRECT ...ttt ettt et e et e st et et emteeneesneesneesseesseeneaneeans 85
FLOWCOMEAINET ...ttt ettt ettt ettt b e et e eae e st e s e e e et e e beeeeebeeaeene e e enseaseseeebeeneeneeneansenes 86
FLOWCOMVEIT ...ttt ettt e s ettt e st e e bt e st e st emeem e e beseeebeeseese et ensebeseeebeeneeneeneansenes 87
FLOWHETUINIC ...ttt et a ettt e e e bt bt e bt e st en e et e besbeeeeebeeneeneeneansenes 87

FIOWPAIMEIBOWIUS ...ttt e e et e e e eenaeeesenaeeesennneesenneees 88

FIoWPAIShalILADWRPooiiiiiiieee ettt ettt sttt 88
FIOWQZAX(HAB)FEC .ttt sttt ettt 89
FIOWTTAPEZEIUMIC.c.ei ittt ettt ettt et e s e s e e s aeseesseensesnnesnaesseenseenseanseans 89
LI ¢ttt b e st b et a et et b e sh e bt bt a et et a e et b ettt nae 90
LOWPASSFIILET ...ttt ettt ettt et e et e e e e s aeesaeebeeeeeneesneesneenteeneeens 90
1Y T 11T 5 USRS 91
INUMEIICTOBILS ...ttt ettt sttt ettt e e st e et e bt e et eaaeeseesseesseenneeneesneesneenaeanneans 92
INUMEIICTOSIIINEZ ...ttt ettt ettt e at e e b e b et e b sabesbeesatesbeenbeanteens 92
PACKVAIUES ...ttt ettt ettt b e et se st e et et e sbe s e e ebeeneene et eneenes 93
POlyNOMIAINHOTAETiieieiieeieieee ettt ettt ea ettt e e et sbe et ebeeaeenee e e e e 94
SINC .ttt bbbkt b bbb e bkt h e e bt b e a e e et et et b et e bt eheeb e ent e tentens 94
SUCCESSIVESAMPICFIILETviiiiiiiiieie ettt sttt e b e et e st e e teesbeeseessesssensaesseas 95
SUMMUINZACCUINLeetieiieieeie et eteettesteeteetestesstesseesseesseesseessesseenseenseansesnsesssesseeseensesnsesnsesnsesssesseesses 95
TAIZEIE ..ttt ettt ettt e et e et e s bt e sa bt e s a bt e e a bt e sa bt e e a b e e s abeeeab e e sabeeeabee s beeeabeeebeeenbeean 96
TTIZTONUITICTIC e euteeiieiiie sttt ettt ettt et et et et e eateestesaeesseeseenseenseesseeseanseenseenseansesnsesnsenseenseensennnesnes 96
Miscellaneous Math MOUIES...........oeouiiiiiieieee ettt et e e e ens 97
UNPACKTOFTOAL ...ttt et ettt e et et e e st esseesae e et entesseesseenaeaneeens 97
UNPACKTOINL ...ttt ettt et et e bt e et et e eeeesaeesaeesaeeneeeneesseenneeneaneeans 98
CONILOL IMOAUILS ...ttt ettt ettt st b et e bt et ee e et e e sbe e beebeenaeeneesae 99
ATAITIHILIO .ttt et a et e et et e bt s et e bt bt e st et et e be st e ebeeaeene e e et e 99
ANDIZALE........eeneeeeeite ettt ettt a e bbbt e a bt et e b e e eb e e bt e bt et e eateehe e bt e st e eateebeenneenbean 100
BaCKSPINTIIMETvieuvieiiieiiieiieciieeeie ettt et ettt e e st e bt e s e esbeesbessaesseesseesseessesssesseesseessenssenssensaensens 100
CLEATMEIMOTYc.vieuvieiieiiieeiteete et ette et este e bt esbeesbeesaesseesseesseesseesseessaseesseesseassesssessaesseensesssesseesssenseensenns 101
COUNLET ...ttt ettt ettt ettt h e b e et eat e sbt e e bt e bt eateeet e e et e s beesbe e bt emtesatesbeenueenseenneean 101
COUNLETUPDINROIIOVET........ueiiiiiieiieieeie ettt ettt ettt et essae e esseensesnsesseesseenseensesnseseensenns 102
DEaADANG.ceiiiiieit et ettt st bbbttt eneen 103
DICLAYTIIMIETc.eietientieie et ettt ettt e st et et et esteeste s eenseenseessessaesseesseensesnsesssesseanseanseansesssensaensenn 103
EORZALE ... ettt ettt et ettt et e bt ea et e a e e s e h e e be e te e et ene e eaeeeae e teenteenteeneenneennean 104
EVENtFIFOQUEUE........cociiiiiiieiiiecieeette ettt et et e st e e taeestaeesaeeestbeessaeessaeessaeessaeanseeensseenseeesseenseaanns 105
LS 1 10 o< SRS 106
EVENTLOZSEIUP ..cneentieieeiteet ettt ettt et b e b e a e et e et e sbe et et eateebeenneenbean 108
FIPFIOP MOQUICcoviiiiiieiiciiiciicieeie ettt ettt ettt b e e ta e s te e aeesbeesbeesaessaebeesseesseessessaenseas 109
FLPFIOPRS MOAUIE ..ottt ettt ettt ettt e e e aesstesaaesseesseesseesseessessaensens 109
HOA ettt bttt b et e a et et bt s h e e bt eh e bt et et be et b et eat et ennen 110
HOAZ .ttt et h ettt et bttt eb e bt bt et e e bttt eb et eat e enten 110
INAEXEAVAIUESAVE ...c..cuviiiiiiieiteee ettt ettt ettt ettt st sbe e et eeneen 111
TIETUSTON. ¢ttt ettt s a b bt e bttt b e s h e bt ebeebt et et et st eb e b eat et enten 112
LaAtCRFIOAL ...ttt ettt st eb ettt e b et eneen 112
LAtCRINT ...ttt ettt ettt ettt et et e s h e e ae e et ettt en e e te et e enteeneenneennean 113
LatChONBItCRANGEeeuiieeieeiieieete ettt ettt ettt e et e ettt et eeseeeseeseenteeneeeneensean 114
LatCRSEIINE .ottt ettt ettt e et e e b e b e et e e ae e ee s et e eaeeeae e et enteenteeneenneennean 114
LeadLagSeqa ... oottt ettt s h e bt ettt eae e eate e bt e b ebean 115
LOOKUPSWICI.otiitiiiieiececteee ettt ettt ettt v et e e b e e ta e s teesaeesbeesbeessesseeseesseesseessessnenseas 116
IMISIMALCRLALCI ...ttt ettt be bt b et eenean 116
OFTDICIAY ..ottt ettt ettt ettt e e st este e b e esbesstesseebeesseesseeseeesaenseensaesbesssesssesseenseenseenseans 117
OINDCIAYc.vieiieieeie ettt ettt e st et e et e e eesaesteesteesbeesseesseesseassessaessaesseassasssesseesseessesssesssensennsenns 117
ORGALE ...ttt ettt et ettt st sbe e b et e at e eh e e bt e h e bttt eat e satesbeenaeeae et e 118
ORGAELALCH ...ttt ettt et b e bbbt e st et et e b sbe bt et enbentens 118
PID et bbbt h bbbt bbbt h et b e bbbttt eneen 119
POKE ..ttt bbbttt ettt b ettt enten 121
POKEIMAIY ...ttt ettt ettt ettt et e et et ea e es e e e bt e bt e st e abeemeeeaeesnee et enteenteeneeeneennean 122
o T 1< DRSS 122
PUISEGENFAST ...ttt ettt et b ittt e st en e et e st e te e bt ebeebe e st eneeneanean 123
PUMPDINCHL ...ttt et e et e st e e tee e saeesaaeessbeensseessseesneensseessannns 124
PUMPUPCHIL. ettt ettt e e sat e e st e e taeessbeessaeessbeensseessseensnesnsseesnennns 124

PUMPUPDIL ..ttt ettt ettt e s bt e e sat e e bt e eaee e baeensaeesaeenaneesseensnesnsaeenanennne 125

RAEOTCRNANGEcvieiiieiiiciiecieeeee ettt ettt ettt e et e e b e e st e s taesbeeseesbessaessaesseenseesseessesssensaensens 126
REAARTIC ...ttt ettt st st b ettt ettt b e bt e it eeneen 126
SEQUENCETTZ ...ttt ettt ettt e b e e b e s bt e e bt e s bt e eabeesabeesabeesabeesabeesabaesaseesabaeenseess 127
S QT IMEATTIZEET e euveeeeeeeieeeietiete et ete st e st e st et et e et e estesse e seesseensessseesaessaeseenseensesnsesssesseanseanseensenns 128
N 110 18 (S 0 TeTS) ol o LT« USSP 129
SEQUENCETUPDIN. ...ttt ettt ettt et e e e et e et e e teeateeseesseesseenseenneenseenneans 129
1T 18153 0L USSP 130
SEERTIC ...ttt ettt ettt ettt bt e bt eb e e bt es e ea e e s e s e ebe et e ebeee e ebeeneem s e e ebeebesaeeneeneeneeneensenes 131
SNAPSNOTCOUNT ...eeetieiiieetie et ettt st et eesteestee e tbeeteeessbeesseeesseeesseeansaeanseesnseeasseesnseeesseesnseeeseenn 131
SHINZSWILCH ..ttt ettt e st e e s b e et e e bt bt ebe e st e st e e e teabeseeebeeneeneeneeneenes 132
SANGSWILCHBYBILSviviiciiiciieiieieeie ettt ettt et et e et e et estaesteesbeesseessesssesseesseesseenseensanns 133
StringSWitChPriority MOAUIC.........coiiiiiieiiiiicieceest ettt be e e s e e e saeeseenseens 133
SYNCVAIUCS ...ttt ettt et ettt e et e st e s st e st enseenseessessaesseeseenseensesnsesssesseanseanseenseans 134
SYNCTORTC MOQUIE ..ottt ettt ettt et e s saesse e seessesnsesneesneeseenseenseans 135
TOZELE MOAUIE ...ttt ettt et e e es e esaessaesse e seenseensessnesseenseensenns 135
TTIZEEIDCIAY ...ttt ettt et e et e et et e st e st e et e e bt e bt entesneeeaeesaeenneenneens 136
Trig@erEVEry X SECONMo ouiiiieiieieete ettt ettt ettt e b e te st s et e saeenteeneeeneenneeneeens 136
B g4 (€ 1<) R RSSO 137
TTIZEETONCNANZE ...ttt ettt ettt et e et et et e st e ebe e bt ebeeseensens e seabesaeebeeneeneeseeneenseneans 137
TrigEEIONKEYIMANYoouiiiiiiiiiiieiie ettt sttt ettt ettt sb et e st et e bee s bt e s bt e bt entesaeesaeenaeenteens 138
THIGEEIONRTIC ...ttt ettt e e e s b e s bt e bt e beestesaeesaeenteeneeens 139
Trig@ErONSPECIALKEYSvveviiiieiiieiieiieseerte et ete ettt ettt et e eeaeste e seebeessesssesseesseeseesseessesssenssensaensens 139
TrIZONBITRENCIEc.viivieiieieeiecte ettt ettt eeb e et et e b e e b e e sbessaessaesseesseesseessessseessensaensens 140
TrigONCRANZEMANYccuvieiiiiieiieie et see sttt et et e et este e teebeesbeessesseesseesseesseesseasseessanssesseessansaensens 141
VATUETESE. .ttt bbbt ettt b e s a s bt beebt et et et sa e e bt bt eat et enten 141
1 0Tl T o I TSP 142
StatiStICS MOAUIES. ...c..eiueiiiiiitiiert ettt ettt sttt et ettt be et eas e eneen 143
F N e 1 L 1< ST 143
e Y41 - RSSO SRS 143
A 5 QY1 L0 (<P UUSS 144
IMINVALUE. ...ttt et et b e e bt e bt e bt et e s et e sbeenbe et e enbeeateebeenneenbean 145
TOtAlIZEEVENLttt ettt et eb e b ettt e et e s bt e s bt et et e saeesbe e e et e 145
TOtAHZEFLOW ...ttt bbbttt ettt st eb et eeneen 146
TOLAHZETIIME ..ottt ettt b e st b e bt bt e et e b st e b bt et e eb e e bt eateneeneen 147
CommUNICAtIONS MOAUIESeoiiiiiiitiitietiee ettt ettt ettt ebe st e e nee 148
COMSELUP ..ttt ettt ettt et et e st e s bt e s bt e sab e e s bt e sabeeeabeesabeeeabeesabaesabeenateenabeenees 148
COMWALCH ...ttt ettt et et bbbt bt et et e st e st e s bt saeebeeaeentensens 150
(037763 (51 D153 o) - USSR 150
DUMPLOZTLM ...ttt ettt e sbt e e be e e b e e sate e s b te e sate e sbteesateebaeenneesane 151
I 10 1015] e oo) o) o F PSSR 152
GEESHIFTOMPOTL ...ttt et ettt et et e e s st e s bt e bt eteentesaeesaeenseenneens 153
PATSESIIINE. ...ttt ettt h ettt et e e e e b e s bt e bt e bt e st e at e bt e bt en bt eate bt e nbeenbean 154
ParseStIINGTOFLOALoiuiiuiiieiee ettt sttt b et e et et e be b e ebe e st enneneeneas 155
ParseStIINETOINTc..eiiiiiieiieee ettt e ettt s bt e s bt et e bt et ebe e eateebeenbeenbean 156
ParseStrINGTOSTATUS ...c.vieiieiieiieiiecieeieeteste sttt et et e et e te e beesseesbeesaesseesseesseesseassessseseesseessesssessaensens 157
POl et bbbt h et et b e bbbt et e bbbt et eat et eneen 158
POIIMOADUS ...ttt ettt b e bbbt es et e e st e b e s bt et ebe e bt eateneeneen 159
QUICSCENTCONTIONIETvii ittt ettt ettt e et e s v e e e beesabeeeabaesabeeeabeesereesaseessseessseenenes 160
SENAALETEDIALAeveeiieiieietieter ettt ettt e b e bbbttt et be bt bt e bbbt et eb e 161
SENASEITOPOTT. ...ttt ettt et sb e bbbt ettt sa e bbbt bbbt et et enee 162
N 1T 1815301 o | OSSR 163
1 10T =1Y T USRS 164
TTIZEEIONRCV L.ttt sttt ettt e a e s bt e b e bt e bt setesbeesbeesaeenaeenneans 165
CHAPTER 6...DISPLAYS, LADDERcct ittt 167
DiSPIAY DETINILION ...ttt ettt e et et e e besb e e bt eseese et e b e besbeebeeseeneeneeneenes 167

Selecting @ Display t0 Editcccveiieiieiiieiiiie ettt sreeae e saeesaaeaeenseense e 167

INAMING the DISPIAY ...ecuvieeiieiiiciieieeie ettt ettt ettt eb e e b e s eaesteesseesseessessaesseeseesseessesssessaensens 169
NUMDbETING the DISPIAY....ccuiiiiiiieieiieii ettt ettt ettt e sttt e enaessaesseesseensesnnesns 169
Setting Display Port ASSIZNMENT..........ccuerieriieiiieieeiertete ettt ee e sae e sseesseeseestessnesseenseenseans 169
Setting DiSPlaY TTIZEET ...ccvvervieiieiieieeieeieseesie ettt e see st e et esseenteseaessaesseesseesseensesnsesnsesseesseenseensenns 170
Entering the DiSPlay TeXt.......c.eeiieiieiie ettt ettt sttt see ettt e s e et e e enteeneesneeeeas 170
Specifying Variable Data FIelds.........cccceeriiiiiiiiieiee ettt 171
SPECIAL (@ FIELAS ...ttt ettt b et e ettt et et esae e et et e ens 171
SAVING the DISPLAY......eeueeuieieiee ettt ettt bttt be et et et e be et e bt eseeneeneeneenes 171
Ladder LOZIC ..ottt ettt ettt et b e bbb e st s he e bt e bt st e bt e nae e te et ene 172
Specifying Ladder Logic SChemMAtiCScoeiuiiuirieiieieieee ettt 172
Specifying Coil Name and DElays..........ccceicieriiriieniieiieieeeesieeie et eae e eesre e eaessnesseesseesseenseens 173
CHAPTER 7...COMMUNICATIONS ..ottt ettt sttt sttt a e 175
INEEOAUCTION ...ttt b e s bbbttt e bt st e bt sbe bt et et enee 175
Overall Communications Design MethodOLOZYcceeveriieriieiiieieeieiee et ees 175
ProtOCOLS SUPPOILEA.ieiieiieiieiieie ettt ettt ettt e e e s se e seenseesseeseesseenseenseensesssensaensens 181
Setting Up Ports and ComMmMUNICAtIONS ATTAYSeeuverueerueerierieriiesteeseeeneeeeesseeseeeseenseeseesseesseesesnsesneesees 181
POTT SEEUP ..ttt ettt ettt et e e st e e bt et e e ae e et e aeeeaeesae e et et e enteeneenneennean 181

F N & ;) N (<1111 o TSRS 182
TTanSMIt ATTAY SELUP ..eoiuietiiiieie ettt ettt sttt et e a e e bt e sbee b e e bt estesstesbeesaeenaeeneeans 182
Adding and Deleting ROWS........couiiiiuiiieieiee ettt ettt se ettt ese et e e e e eeeneas 183
Specifying Measurement t0 SENdoooieiiiiiiiiiii ettt 184
SAVING FOMMALooitiiiiiiiciieieceeettese ettt ettt et e st e e st e teesbeesseessesseesseesseesseenseessesseesseensenssenns 185
RECEIVE FOIMAL SELUP....ccuviiiiiiiiiiieiieie ettt ettt ettt et b e taesteesaeesbeesseesaesseeseesseesseessessaensens 185
Adding and Deleting ROWS........cccueiiiiieriiiiieieeiesieeie ettt e teeaesaeseeesteesseessessseessesseesseessessaessens 186
Naming Received Data FIeldSccveiiieiiiieieieiiee ettt 187
Saving RECEIVE FOIMAL.........ccooiiiiieiieiiee ettt et esneesseeseenseens 187
Special Fields...GIODAIRTCcc.ooiiiiiiiie ettt st se e esesneesseesseeseenseens 188
How to Synchronize Realtime Clock/Calendars.............ooeeiieiieienieiienierieeee e 188
CommuUNICAtioNS FOIMALSc.eeiiiiieiietietieee ettt ettt ettt e see st esbeesaeeteeneeeneeseenneens 188
RUGO FOIMIALS. ..ottt ettt ettt ettt ettt et et e e st e e st e sbeesaeebeeneeeneeenee st enseenseeneenneensean 188
TLM Data Transfer FOIMatcooiiiiiiiiiiiieeee ettt 189
Special Command FOIMALcc.oooiiiiiiiiiiccieie ettt te e e beesre e s reesreesaeesseenseens 190
Send Flash Load FOIMAL..........cccoiiiiiiiiiiei ettt st 190
Logger Dump Request FOIMALcoccuiiiiiiiiiieiiieciic ettt sttt st steesbeesane e 191
Logger DUMP FOTIMALooiiiiiiiiiiieeie ettt ettt et e bee et e e baeesaae s sbaeesaneennaeeaeesnne 192
Logger Dump Request/Response EXamPles..........c.ovierierieiiieiieiiesieseee et 194
CHAPTER 8...SAMPLE APPLICATIONS ..ottt 197
INEEOAUCTION ...ttt ettt st ettt et et sa e bbbt oot enee 197
AP NOTE #1: Stand Alone Tank Level Monitor, TankTest.rgdcccocevienieiieiinereeeeeeeceeee 198
MaiN DISPIAY SETUD ...ttt ettt ettt e st e bt esae ettt e st e saeenae et e enteeneeeneennean 199
AP NOTE #2: Stand Alone Two Pump Controller, TANK2PUMPS.1gdccoveiieiieiiieieceieeeeen 201
(€111 10 0TS 1510 o R PSSR 202
AP NOTE #3: Telemetering Tank Site, TANKTESTTLMcccciiiiiiiiiiiiieieeee e 205
GENETAL OPETALIONeieuiieeiieeiieetieeiteeteeetee et e et e ebeeebeeseteeesaeesateeasseessseeasseessseessseesssaesnseensseesssesnsses 206
COMMUNICALIONS SELUPeevieiietiieieitiestesteeteeteeeesteesteeseesseessesstesseesseesseessesssessaesseesseessesssesssesseessenns 206
AP NOTE #4: Communications Setup, GENeEralcccccuevvieriieriiieieiieiiesieesieeie e eevesteesseesseeseeseennes 210
AP NOTE #5: Ethernet HOOKUPccovveriieiieiieieeiteieeie ettt sttt essaesseessesssessaennees 212
INETOAUCTION ...ttt ettt st b ettt e bbbt ebe e eaee e eneen 212
Digi One RealPort RUGID Configuration.............ceeeeerieerierienienienieeieeeeseesteeeeesesvesseesseesessesenes 212
AP NOTE #6: ALERT TTanSIItterceueeueeuieieietentinierieeieeieeitetest et sie et ettt st stesbesbeeve e ennensens 214
AP Note #7: CAPTURING LOGGED DATA WITH A PDA ..ottt 217
CHAPTER 9...TROUBLESHOOTINGccutittitieiiiiieiieiieieiesie ettt ettt tesaesae s saessessesseeseeseensensensensas 219
INETOAUCTION ...ttt ettt st b ettt e et e ee e e s bt e s b e e bt e et satesaeenaeenteeneeens 219
WAtCHh WINAOW ...ttt ettt et st b e s bt e bt e et st e saeesaeenteeneeens 219
TTOUDIE DIAGINOSIS ...ttt ettt ettt ettt es e et e s e s e teebeeeeebeeseeseeneens e seeeeabesseeneeneensenes 220

Basic Operation and Program Loading Problems.............cccocveriieiiiiciiiienienieic e 220

LCD Display and Keyboard Problemsccveuiriieienieriieiieiecie et ere e ve e esesnesenes 221

D@ 0 o o] o) 113U 222
Communications ProDIEMIS.ccuiriirieiiciieie ettt s e ensesnaesneesseenseens 223
Data Logging ProDICISccvieiieiieiecieeieeit ettt ettt ae e ae e e st esseeseenseensesssensaensees 225
MOAUIE PIODICINS.ttt ettt et e sttt e st esaeesae et e eneeenteeneeeneennean 225
CHAPTER 10... WARRANTY, DIMENSIONS, SPECIFICATIONSccoeiteieieieiereee e 227
AT 021 11 TSRS 227
RetUrn/ReEPaIr POLICY ..ottt ettt et e b e et be e e ene e e nes 227

Table of Figures

Figure 1 Powering the RUG3 from 120VACooiiiiiie ettt 14
Figure 2 PC Serial HooKUp t0 RUG3oouiiiiiiiii ettt st 15
Figure 3 1/O SETUP PAZE ...cveiieiicieiieie ettt sttt ettt et sttt e te e beesbeesbeesbessaesseessaesseensesnsennns 20
Figure 4 Analog Input Configuration Panelccocceeviiviiiiiiiiiieccie e 21
Figure 5 Al Module With PrOPerties SEt........cceririririririiieieiesestestesie ettt 22
Figure 6 Digital Output Configuration Panelc.coceriiiiiiiiiiiiniieceeee e 22
Figure 7 I/0 Channels With I/O Modules Installed.............cccueriirininininininieicicececeeeeeeeeeee e 23
Figure 8 Main Project Panel........ ..ottt sttt 24
Figure 9 Selecting a Setpoint Module from Module Librarycccoocoevieiiiniinieiieeeeeeeeee e 25
Figure 10 Setpoint Module Configuration Panel.............cocoeiiiiiiiiiniiie e 26
Figure 11 Example Project With Setpoints Configuredcoocoiiiiiiiiiieeeeee e 27
Figure 12 Configured HiLo Alarm Generator Module............cccooieiiiiiiiiiiiiiiieeee e 28
Figure 13 Project Screen After Alarm Generators Added..........cceoevieririniniiieieeeeee e 29
Figure 14 Digital Output Configuration Page With Status Data Base Showing...........c.ccecevinininiininnennn. 30
Figure 15 Display Selection Tab in Module LiDraryccocooeriririiinieiiieieeesceeieseeeeee e 31
Figure 16 Display Editing Panel............c.occuieiiiiiiiiiceee et 32
Figure 17 Display DefiNedccooierieriieiieieeieseeee ettt ettt ettt sete e sseeseenseenneennenens 33
Figure 18 Display Panel Showing Two Setpoints Installed on Line 2ccccoceevveiiiinininineniceienieneen 34
Figure 19 R3ISETUP TOOIDATcccuiiiiieiietieit ettt ettt sttt ettt e e s s e sne e neeseeaeemeeenes 34
Figure 20 Example File Load Progress SCIEeM.ccuiiiiiiiiiiieiieiieie ettt e 35
Figure 21 RUG3D FaCe PROtO.cuiiiiieiieiieieee ettt ettt ettt e e et ae et e e e 38
Figure 22 RUG3D Bottom Ports and Relay I/O Photo..........ccooieieiiiriiiiiiiieeee e 38
Figure 23 RUG3D TOP I/O PROLO -...eeeeiieeieieeeee ettt st e e 38
Figure 24 RUG3 BIOCK DIQZIAM.......ccuiiiiiiieieieiieite ettt ettt sttt eae e ene e st e e e ee 39
Figure 25 RUG3 Power Wiring EXAmPIEScccecviiiiriieiiiiieiiereesie ettt eteebeeseesaesaeesseesseesaesnneses 41
Figure 26 USB and Serial POrt HOOKUPoveiiiiiiiiiiiieieeeeeee e e 42
Figure 27 DI HOOKUDP EXAMPIEccvviiiiiiiiiieiiicieciesieecie ettt ettt et et ess e ssaessaessaessaesseesneennesnns 45
Figure 28 Relay HOOKUP EXAMPIEc.ooviiiiiiieiiiiiiiiiiiieseeceteese ettt e 46
Figure 29 Transducer Hookup to Analog INPULScc.eevvieiiiriieiieciiecee et 47
Figure 30 Modem/RS232 Channel CONNECHIONScocveeruerreerieiiieniienie ettt et e eeee et nee e enee e 48
Figure 31 Analog Output CONNECLIONSeeuvieeieitieitieitieie e ete et et et ee et eetee et e be e e eseesseesseesseeseenaeeneeenes 49
Figure 32 Typical RUG3 Remote Radio APPliCAtioNnccceeiiriiniieniieiieieeieeieieeeee et 50
Figure 33 R3SETUP Opening Panelcocooiiiiiiiiiiiiiieieeeet et 54
Figure 34 SEleCting I/ TYPE ..eoueeiiiieeeiieeieei ettt ettt ettt sttt eat bt e et e e et e be et ebeeneeneeneeneenee 56
Figure 35 Digital Input Configuration Panelcccoooiiiiiiiiiiiie e 56
Figure 36 Databases Showing Integer Database.cceecvireieiierieniieiieieeieeeeste et sreesae e ees 58
Figure 37 Selecting Module From Module Library..........ccccecuerierieriniiinininceieeee e 59
Figure 38 Setpoint Module Configuration Panel.............ccocoeiiiiiiiininiiiieeeeeee e 59
Figure 39 Dragging a Database Item Into @ Cellc.ccoceririiiiiiiiniiiinineeeceeere e 60
Figure 40 List of I/O and System Modules Installed in Projectcccceceecieviiriinininiinenenceiceceencene 62
Figure 41 Searching for OULPUL USAZEecuieruieriieiieieeie ettt ettt seestte sttt et entesnaessaesseesseenseensesnnennns 63
Figure 42 The Display Tabcceeoioiiiiieeee ettt ettt ettt e st e s et e beete e e eneeeeee 64
Figure 43 Configuring Display fOr LCDc.cciiiiiiiiiieieie ettt ettt 65
Figure 44 Project Ram and Flash UtiliZationccccceoieiioiieieee e 66
Figure 45 Terminal Page Showing Normal RUG3 Boot Up MeSSages.........ccueruerueriererenerieieeeienieneesee e 67
Figure 46 WatCh WINAOWcooiiiiiiiiiit ettt ettt et ee st e e et et e bt et ebeeneeneeneaneenes 68
Figure 47 Documentation Generator CROICEScceirirrierieiienieenieeie ettt ettt st 69
Figure 48 Com Port Setup Panelcoooiiiiiiiiiiie ettt e 69
Figure 49 Preferences Panelcooiiiiiiiiiiiie ettt e 70
Figure 50 Module Editing Panel...........c.ccoiiiiiiiiiiiiiinieeeeceeeseste sttt 72
Figure 51 Display Selection Panel...........cccouiiiiriiiiiiiiiiieieeesee ettt 168
Figure 52 Display/Report Definition Panel ...t 168
Figure 53 Ladder Editor Initial Panel...........cccoooiiiiiiiiiiie e 172

Figure 54 Coil Name and Delay Specification Pageccocveviieiieiieieiienieeiece ettt 173

Figure 55 Illustration of Three Main Communication System TYPEScccevveerierieriiereeneeieeieeeeseeeens 177
Figure 56 System Types Using Store and Forwarding to RTU-3.....c..ccccoceririeiinininininneceeeeieneeen 180
Figure 57 Typical Modem Setup for Radio AppliCations........c.eeerirerererienieienienene ettt 182
Figure 58 Initial TX Array SEtUP SCIEEM.....cceerrierrieiieeieiierieete et eteettesteeteeaeesaessaesseeseesesnnesseenseeseenseans 183
Figure 59 Example TX Array with Variables Installed.............ccccoeiieiiiiiiiinieee e 184
Figure 60 Panel to Select Telemetry MUltiplier..........ccvoiieiiiriiiiieieieeeee ettt 185
Figure 61 Initial Receive Array Setup Panelcccooiiiiiiiiiiieeee e 186
Figure 62 Receive Array Signal Naming.........ccccviiiiiiiiiiiiiiiieieeee ettt eae e eas 187
Figure 63 Tank Level Monitor APPLICAtION.eeieieiiirieie ettt sttt ettt et ebe e seeeeneas 198
Figure 64 Modules in R3DTankl APPlICAtIONc.eouieuieieieieiesie ettt st 199
Figure 65 R3DTank1 Main DiSplay SELUPcccvervieriiiiiiieiiesit ettt et steesae e seeaesnaesseesneeseenseens 200
Figure 66 Two Pump Stand Alone Controller............ooiiiriiieniiiirinincreeeeeeee e 202
Figure 67 Four Pump Control Logic DIagram..........ccecverieriierieeieeieniieieeieeie et sieeseseeseeseesseeseeneeens 203
Figure 68 Radio Telemetry Tank MONItOT.........cooviiiririiiiieieteeneneseeeeeet ettt 205
Figure 69 ReCCIVE ATTAY SCTUD ...oevvieiieiieieeiieciieie et steste st et ete et et te e esteesseesaessaesseessesnsesnnesseesseenseensenns 208
Figure 70 TransSmit ATTAY SELUP ...ccuteotieieeieitieiteete ettt e sttt et ettt e st e et e e esee et e e sbeeteensesneesneesseesseeseenseens 209
Figure 71 Communications Setup, Passing Tank Level Among Sitesccceeeveeiienieneeieeiesiereeeae 211
Figure 72 Alert Radio Remote Wiring DIiagramccooceviiiiieiieiieieeiesiceeee e 214
Figure 73 SendAlertData ModUIE SETUP.......c.ccueruiriirieieieieiesteete sttt ettt sttt ee s 215
Figure 74 QuiescentController in ALERT APPlICAtION........cceiuiiiriiieieiieiieiee ettt 216
Figure 75 Serial Adapter to Dell AXIM30.......cc.oouiiiiiiiiiiie ettt s neas 217
Figure 76 WatCh WINAOWc..oouiiiiiiiiiiitiieeee ettt sttt ettt b e s bbb e e enean 220
Figure 77 RUG3C/D DIMENSIONS.ccueiuirtiriienieieieniesteetesteettestetetestes b sttt sseestessesensestestesbesaeeseeneessensensan 228
Figure 78 RUG3P DIMENSIONSoruirtiriiitiriietieiteteiesteste sttt et etete sttt st sbe st este st e testesbesbesaeesteseesseneensan 229
Figure 79 RUG3 Panel Mount Cutout DIMENSIONSccevueeuieierieniiniinienienienieeiteteteie sttt neeees 230

List of Tables

Table 1 RUG3 Current Requirements from 13.5 VDC SUPPLY...ueireiiriieiiiiieiieieceeeeee e 14
1 o) (A AL € 1Y [1<) ST 37
Table 3 Digital Input FUunction ChOICES........ocuieiiiieiiieitieie ettt 44
Table 4 Digital Output FUNCtion CROICEScuertiriiiiiieieiieiet ettt st 45
Table 5 Binary to Hexadecimal to Decimal CONVEISIONS.cccecueruerierierieetieiieiieieieie et sie et nes 91
Table 6 Modbus Function Codes SUPPOItEdc.ecoviiiiiiiiieiricieeieeeeee ettt ere e see e sreereeaeereesreenreens 159
Table 7 RUG3 POrt ASSIZNIMENLScc.eevieeieriieriieieeteiieseesteesteeteessesseesseesseessesssessaesseessesssesssesssssseessesssenns 170
Table 8 List Of (@' FICId USESeevuieiieiieiieciieieeit ettt ettt te et e e b e e saesteesaa e seesseesaessaesseesseensenns 171
Table 9 Sample TeleMetry Tag LStc.cccverieiieiiieiesiereerie ettt ettt aeesesaesneesseesseesseenseens 178
Table 10 Protocols SUPPOITEQ.......cc.eeiieieeiesiieieeie ettt ettt ste st ettt e ete et e st e eteesseensesssesseesseesseenseensenns 181
Table 11 RUG3 MESSAGE HEADERcccociiiiiiiiiiineneteeteeese ettt 189
Table 12 RUG3 DATA TRANSFER POLL FORMATccccctiiieiniiieinicie ettt 189
Table 13 RUG3 DATA TRANSFER REPLY FORMATccoviriiiriiieintiee et 189
Table 14 RUG3 SPECIAL COMMAND FORMATccoiiiiiiiieirieieesiete ettt 190
Table 15 RUG3 STATUS REPLY FORMATooiiiiiiiiiincteeneteeteest ettt 190
Table 16 RUG3 FLASH LOAD FORMAToouiiiiiiiiiiriinctrenetnteeest ettt 190
Table 17 Flash Load Reply FOIMALccoiiiiiiiieie ittt 191
Table 18 RUG3 LOGGER INITIAL DUMP REQUEST FORMATcociiiiiriiieiieieeeeeieieeeieeeees 191
Table 19 RUG3 LOGGER SUBSEQUENT DUMP REQUEST FORMATcccectvirieiriiieinieeeeesienenes 192
Table 20 RUG3 LOGGER DUMP FORMAT (applies to both LogMany and Event Logger) 192
Table 21 RUG3 LOGGED EVENT ITEM FORMAT (format for each event/data item in table above) .. 193
Table 22 RUG3 LOGMANY ITEM FORMATc.oouiiiiiiieiieietttee ettt 193

10

Introduction

CHAPTER 1...INTRODUCTION

Welcome to the latest in RUGID’s series of small remote terminal units (RTU’s). The RUG3 unit
is the latest in a long line of RTUs designed for remote data acquisition and control applications. It
incorporates advanced hardware and software techniques so you can implement your application in the
minimum time. Numerous hardware and software safeguards are incorporated into the design so you can
be assured that the unit will continue to operate for many years in the most demanding field environment.

This document will help get your RUG3 unit up and running within minutes of unpacking it. If
you are new to the RUG3, we encourage you to read the “Getting Started” chapter that follows so you will
understand how to use the support software and sample applications.

Minimum Equipment Required

In order to use the RUG3 you will need to run RUGID’s R3ISETUP.EXE program on a PC-
compatible computer running Windows 95 or later, or Windows NT, and having at least a 600 X 800
SVGA screen. The R3ISETUP.EXE program is available for download free of charge from our web site
address below. For program loading, you will also need a serial cable with a DB9 female connector on one
end and a 3.5 mm plug connector on the other. This is available from us, part number R3CBL232.

Factory Support

If you have any trouble with your unit or have questions regarding anything in this manual, feel
free to call or write us at the addresses and phone numbers below:

Mailing address: RUGID Computer
6305 Elizan Dr. NW
Olympia, WA 98502

Phone number (8AM to 5 PM PST): (360) 866-4492

Fax number (24Hrs/day): (360) 866-8074
Web site: www.rugidcomputer.com
Email: support@rugidcomputer.com

11

Introduction

12

Getting Started

CHAPTER 2...GETTING STARTED

Introduction

This chapter presents the basics of getting the RUG3 running. It includes installing the support
software, powering up the RUG3, loading configuration files to the RUG3, and implementing a simple
application to give you a feel for how the support software works. The section on implementing a simple
example application is extremely detailed to the extent that virtually every mouse move, click and resulting
screen are shown. This is to make sure that we have left nothing out that may lead to confusion later. If
you are already familiar with the RUG3, you may want to skip this chapter.

Installing RUG3 Support Software

In order to load configuration files and the RUG3 operating system, and to modify the RUG3
operating system, you will need the RASETUP.EXE program. This program is included on request at no
extra charge on CD with each RUG3 unit. It is also available for download at no charge from out web site.
Follow this procedure to install the program:

1) Make sure you have Windows 9X/NT/2000/XP/ME/Vista (herein after referred to as Windows)
running on a PC compatible computer with a screen having at least 600 X 800 pixel resolution.

2) Insert the R3SETUP disk into your 3.5 inch floppy drive or CDROM drive, whichever applies; or
download the program from our web site: www.rugidcomputer.com/Downloads. Double click on the
SetupXXX.exe program, where XXX is the revision number such as 205. The program should self
install into the directory C:\Programs\RUG3.

3) To start the program, go to START, PROGRAMS, RUG3 and double click the R3 icon.

The R3SETUP program and its various utilities will self install and leave an icon in your main “Programs”
list. During installation, you will be asked to confirm the destination of the files, or to indicate an alternate
destination. Feel free to alter the destinations, but be aware that this document assumes that the locations
are left at the defaults.

13

Getting Started

Applying Power to the RUG3

RUGS3 units can be powered from 120
VAC using a standard 12 VDC wall
transformer. Simply wire the wall transformer’s E 5833539538
output wires (clip off any connector as 000000000 [060006
necessary) as shown in Figure 1. An 800 ma
transformer should be sufficient for most
applications. Note that if the RUG3’s measured
battery voltage falls below 11.0 VDC, internal
logic will turn off the loop supply and will not
allow it to be turned on until measured battery
voltage rises above 12.0 VDC. This is to protect

QEOLEOLLL
oot
DIGITAL INPUTS

ANALOG INPUTS

RUG3 RTU

against the unit drawing excessive current in an On Qevaze 0 u% S
attempt to maintain full power to the loop N dmb SISISISISISISISISIS)

supply loads. Total RUG3 power draw, in - < . ::zz2:5¢
milliamps, can be estimated from the il

measurements presented in the following table,

or from this equation, assuming a 12VDC power

source: -

Pwr in ma= + J\?XRC .
2.28+0.68*(if have LCD) XFORMER I
+19.9*(if LCD backlight ON)

+2.93*(if modem transmitting)
+17.5*(if loop supply ON)

+57.0*(number of 4-20 ma loops ON) Figure 1 Powering the RUG3 from 120VAC
+39.0*(number of relays ON).

For board revisions 11 and later, you can also power the unit from the USB port with these
restrictions: the 10 amp relays will not pull in and the loop supply will not work (they need external 12
VDC). Relay outputs on units with solid state relays (SSR) will work off USB.

For board revisions 10 and earlier, if you use the USB port, be sure to power the unit from
12 VDC before plugging in the USB cable; and remove the USB cable before removing 12 VDC.

The board revision is noted on the unit’s label.

Table 1 RUG3 Current Requirements from 13.5 VDC supply

ITEM CURRENT DRAW, ma. NOTES:

Unit unpowered 0.002 internal lithium battery | Timekeeping mode

Unit powered by 13.5 VDC 2.28 Full operation, no loads on
LCD, no backlight 0.68

LCD backlight 22.2

RS232 port 4.76 Only when cable connected
Poll using internal modem 2.93

Loop supply, no load 17.5

Loop supply, 120 ma load 360.0

Relay, 10 amp 39.0 Current draw per relay
Solid state relay 3.0 Current draw per SSR

Max draw, everything on 538.0 LCD, loop supply, all relays on

14

Getting Started

Preparing to Communicate with the RUG3

The figure below illustrates how you connect a PC to the RUG3. With either the illustrated USB
or serial port connection, you can load configuration files, load the RUG3’s operating system, and send
screens of information from the RUG3 to the PC for observation by an operator. In either case, you must
supply power to the RUGS3 as illustrated above. Note that when the USB cable is installed, the RS232 port
#1 is disabled. You cannot use both simultaneously.

i i
52323555535555552 §EZE§=SE§_§§HESE¢=E
|\ D00000000[00000000 "_*:::L*:::'_*__;'_‘I_";;;;;‘

DIGITALINPUTS ANALOG INPUTS DIGITAL INPUTS ANALOG INPUTS

RUG3 RTU RUG3RTU

Etl d,,b [SISISISISISISS ﬁ lll 09888 ‘

FeEEieaeis EREEEEEEiE
. Mini-USB
STD USB to PC
PN R3ICBLUSB
USB HOOKUP | SERIAL PORT HOOKUP

Figure 2 PC Serial Hookup to RUG3

RUG3 BASIC OPERATION

When you power up the RUG3, it will perform various tests to determine operating system and
memory integrity. If it determines that everything is OK, it will return to the same tasks it was doing
before it was last powered down. Normally, this will mean that it will begin running the user’s program. If
it finds an error in the operating system, it will issue the message “Waiting for OS load...” using the RS232
programming port. This should rarely happen, but if it does, you must reload the operating system using
the R3SETUP program. If it finds an error in the user configuration file (user program), or if no file is
present, then the unit will present the following display on the unit’s RS232 port:

*** SYSTEM MENU ***
Version 205
No program

5 Set clock/calendar

7 Adjust LCD contrast, now =130
8 Raw I/O data

Choose option...

If this is the case, then a new configuration file must be loaded from the R3SETUP program.

15

Getting Started

If the program is found to be intact, the program will start running and the unit will present the following
menu on the serial port:

% SYSTEM MENU *

Version 205
Program: R3Burnin.rgd 03/31/04 12:13:16 PM

1 Display Menu

2 Setpoints Menu

3 Logon

4 Log off

5 Set clock/calendar

6 Future

7 Adjust LCD contrast, now =130
8 Raw I/O data

Choose option...

This menu header indicates the installed operating system’s revision (2.05) and the user configuration file
name and date of installation. Here are the options from the above screen. They will be discussed in detail

later.

1) Display menu...presents list of displays for this port from which you can select.

2) Setpoints menu...presents list of setpoints that you can observe and alter

3) Logon...enables you to log on for setpoint alteration

4) Log off...disables ability to alter setpoints

5) Set clock/calendar...enters a prompted system for setting the realtime clock/calendar. Simply enter
those items that need to be changed, or hit [ENTER] to skip to the next item of clock setting.

6) Future

7) Adjust LCD contrast. You will be shown the present LCD contrast value (0 to 255). Enter a new
value to adjust LCD contrast. Low numbers give light contrast; high numbers give darker contrast. A
value of 130 usually gives good contrast.

8) Raw I/O data...causes unit to show raw I/O data (DI’s, relay states and analog input raw counts).

Configuring the RUG3

Once you have applied power to the RUG3 and the serial cable is hooked up, you can load a

project’s configuration file into the unit and observe its operation. Before you can do that though, you must
design the project and generate its configuration file. Notice that we refer to a project’s configuration file,
rather its program. Unlike earlier RUGID units that were programmed in BASIC, the RUG3 operating
system contains building blocks, that we refer to as “modules”, that are already programmed, debugged and
compiled in the C language and are part of the RUG3’s operating system. Our job as programmers now
becomes one of connecting together the modules (i.e., designing the project) to do the task we wish the
RUGS3 to perform. When we tell the RISETUP program to compile our project, it produces a configuration
file for loading into the RUG3.

16

Getting Started

The RUG3 Menu System

When the RUG3 starts running its program it will attempt to present the same display that was
being shown at the end of the prior run. If it can’t, it will present the following menu, which is referred to
as the system menu, and is the top level menu in a running RUG3. This menu also is presented whenever
you press the minus [-] key on the keyboard.

System menu for serial ports:
*** SYSTEM MENU ***

Version 205
Program: R3Burnin.rgd 03/31/04 12:13:16 PM

1 Display Menu

2 Setpoints Menu

3 Logon

4 Log off

5 Set clock/calendar

6 Future

7 Adjust LCD contrast, now =100
8 Raw /O data

Choose option...
System menu for the RUG3 2 X 16 LCD:

1DSP, 2SP, 3LOGON
5CLK, 7LCD

If you have already logged on and the logon timer has not timed out, or, if the logon feature is not
employed, then option 3 above will not be shown, and you will be allowed to change setpoints if you wish.
Notice that the program is running when the above menu is displayed; and that changes you make to
setpoints, or clock values will take effect immediately.

Accessing Displays

When you press key [1] from the system menu above, the RUG3 will present a display list of this
form from which you may select a display to be presented. If you are using the serial port or USB port, the
entire list will be shown; in the case of the 2 X 16 LCD, only two display choices at a time will be shown.
The list below is simply an example; the list you see will be different:

*#% DISPLAY LIST ***

0 Levels

1 Summary display
2 Flow rates

3 Run times

4 Pump status

5 Weather info

6 Pump history

Choose display...

17

Getting Started

The entries in this list come from the Display Title for Menus box at the top of each display definition
page in your project as defined using R3ISETUP. There is a separate list for each port for which you have
defined displays. If the list contains more than 10 entries, then additional pages will be available from
which to choose a display on the RUG3. To access a particular display, hit the numeric key corresponding
to the display you want. To access another page of display titles, hit the [ENTER] key. If you select a
particular display, the RUG3 will immediately present the display you selected. Thereafter, each time you
hit the [ENTER] key, the RUG3 will present the next display in the list and cycle back to the beginning of
the list after the last display. At any time, if you hit the minus [-] key, the RUG3 will return you to the
system summary menu. For the RUG3’s 2X16 LCD, use the up and down arrow keys to scroll up and
down the lines of any display.

Accessing Setpoints Using Serial Ports

Hitting key [2] from the system menu will cause the RUG3 to present the first page of setpoints.
The setpoints are arranged alphabetically by R3SETUP before loading into the RUG3. If the setpoint list
contains more than 10 entries, then additional pages will be available from which to choose a setpoint. To
access a particular setpoint, hit the numeric key corresponding to the setpoint you want. To access another
page, hit the [ENTER] key. If you select a particular setpoint, and you have logged on for setpoint access,
the RUG3 will immediately present the setpoint you selected and prompt for a new entry. You can then
either enter a new value followed by the [ENTER] key, or press the [ENTER] key alone to exit from
altering that setpoint. Hitting the MINUS [-] key will return you to the system menu.

Accessing Setpoints Using the 2X16 LCD:

When using the RUG3’s keyboard and 2-line LCD, hitting key [2] from the system menu will cause the
RUGS3 to present the first setpoint. Setpoints are arranged alphabetically by R3ISETUP before loading into
the RUG3. The prompt for the setpoint will be presented on the top line of the display. The existing
setpoint value will then be presented on the second line. To move to the next setpoint in the list, hit the
[ENTER] key or the [Down Arrow] key. To move to the previous setpoint, hit the [Up Arrow] key. To
change the value of the setpoint that is displayed, hit the [CLR] key to erase the existing value, then key in
the new value followed by the [ENTER] key. Hitting the MINUS [-] key will return you to the system
menu.

Logging On For Setpoint Access

If the programmer has engaged logon security in the configuration file, hitting key [3] from the
system menu will cause the RUG3 to prompt you for your access code. This code is set using the SysSetup
module in R3ISETUP program. It can either be a fixed number, such as 714 in the example below; or it can
be taken from a setpoint in which case it can be modified by anyone who knows it and knows what title it
has been given. After you enter the correct access code, the RUG3 will allow you to alter setpoints. If you
are not logged on, the RUG3 will allow you to examine setpoints but not change them. Once you are
logged on, you will remain logged on until the logon timer expires. If you alter a setpoint, the logon timer
will be restarted. The logon timer timeout period is set by the programmer in the SysSetup module.

Logging Off Setpoint Access

Hitting key [4] from the system menu will cause the RUG3 to disable setpoint access until you log
on again.

18

Getting Started

Setting the Clock Calendar

Hitting key [5] initiates the clock/calendar setting process. The system will prompt you for each
element of the clock/calendar (day, month, year, hour, minute, second, day of week). To change each
entry, simply enter the new value when prompted followed by the [ENTER] key. To skip an entry without
altering that element of the clock/calendar, hit the [ENTER] key without entering a value.

Adjusting LCD Contrast

Hitting key [7] from the system menu enables you to adjust the LCD contrast. When you hit key
[7] from the system menu, you will be prompted for a new contrast setting. Full range is 0 to 255; but
normal range is usually around 130 depending on LCD temperature. A value of 130 usually gives
acceptable contrast.

A Simple Application

To illustrate how you configure the RUG3 to do something useful, let’s configure a RUG3 to read
an analog value that we’ll assume is a tank level and generate high and low alarms based on the measured
tank level. We’ll send the alarms to a pair of relays on the RUG3. We’ll also make the RUG3 show the
tank level and alarm states on its LCD display.

Specifying RUG3 Hardware

To begin, start the R3SETUP program you installed on your Windows system above. To do this,
click on the R3 icon on your desktop:

R3
2

rasetuphy

or click START...Programs... and select “R3SETUP”. You should see a screen appear as illustrated
below. This is the screen where you tell the RUG3 what inputs and outputs you wish to use and what you
wish to call each of them. Your screen should look like this:

19

Getting Started

i . L — - : REI D*ZoRB oot O=RraM | 5N

| Spstem.SechTig
Spetem.SecTrg

Open Proj Save Az Setup 110 Send Pogm Terminal Wistch = Reassign Document
Setup |/0 Chantels : HS-DA'TAB-ASES : :
4 : X ; . X Close T3 | R S I:
C Click on unassigned |/0 point [bracketed] to define for spstem. fings |5
|— Qr, click on any previouzly assigned [not bracketed) 1/0 point to edit. Floating Pt l Integer Status
C
|— Analog [nputs Drigital | nputs Drigital O utputs Analog Dutputs System.BootTrg
Syztem Logon

[Chan]
[Chan 7]
[Chan E] [Chan B]
[Chan 5] [Chan 5]
[Chan 4] [Chan 4] [Chan 4]
[Chan 3] [Chan 3] [Chan 3]
[Chan 2] [Chan 2] [Chan 2] [Chan 2]
[Chan 1] [Chan 1] [Chan 1] [Chan 1]
COM COmM
|Ram= 0/1024 \Pgm Flash= Z&928/25928 Logger Flash= 0/524288
Figure 3 I/O Setup Page

This indicates that the RUG3 has available six analog inputs, eight digital inputs, four relay outputs, and
two analog outputs. The default channel names in brackets (‘[Chan 1], [Chan 2], etc’) indicate that the

channels have not yet been named by you.

Specifying I/O Assignments

We must now assign names to the I/O points and set some scale factors and other properties so
that we can refer to them as we connect them together. First, let’s set up an analog input. Click on the
analog input’s Chan 1 field. You should see the following screen appear. It allows you to name the analog

input and set parameters for it.

20

Getting Started

Module Type: Analoglnput

Module name, this ingtance: || —D Save | x Cancel |

Toggle DescriMotes |
Dezcrnption:

todule soales raw Al'z to give floating point engineering unitz [EL] rezult.

If type=0, unit engages current zense resiztor and uzes 4-20 ma. calibration.

[f tppe=1, unit digconnects current sense resiztor and uzes 0-5 v calibration

Filker conzstant sets low pass filtering.. larger constant slowes response bo changes an input,

Inputz and constants: Outputz to Data B ases:

[bern: Wal Azsigned: [bern: MHame in D atabase;
[hout Channel #. 1-6 1 E Ll Outowt

1=enable. O=hald Faw &/0 outout |.Haw
Tupe; 0=4-20ma. 1=0-5y
Ell at 4 maaor ey

ElLl at 20 maor 5w
Filter conztant

Hiah outowt limit E LI

Lowy outowt limnit ELI

Figure 4 Analog Input Configuration Panel

This is the parameter entry screen for the first analog input channel. This is one of over 100 pre-
programmed modules available for your use in the RUG3 system. They will all have more or less the same
appearance but with different input and output properties and descriptions. Your cursor should be sitting in
the edit box where you enter the name of this channel. If not, click in the box to the right of ‘Module name,
this instance’. Using your PC’s keyboard, enter the name “TankLvl”. Notice that as you do so, the cell to
the right of EU output in the outputs list box will immediately reflect what you are typing. The name that
appears there (TankLvl.OUT) will become the name of the measurement coming from this analog input
after it has been converted to floating point and placed in the RUG3’s floating point data base.
Immediately below the module name entry cell is a larger cell labeled ‘Description’ that holds a brief
description of the uses of the input properties below it. Down below, in the ‘Inputs and constants’ list, you
will set the properties defining how this analog input will behave to produce a useful analog value for use
by the rest of the program. The first input item, ‘Input Channel #, 1-6’, has already been filled in with a ‘1’
to indicate that you are working on the analog input module for channel 1. Click on the cell to the right of
the 1=enable, 0=hold item and enter a ‘1’ to designate that you want the module to calculate its EU
(engineering units) value on each scan. Now, select the cell to the right of the Type: 0=4-20ma 1=0-5v
field and enter a ‘0’ to designate that this is a 4-20 ma. type analog input. In the next two cells below this
one enter values of 0.0 for EU at 4 ma or 0 v and 15.0 for EU at 20 ma or 5 v. This will specify that 4
ma. results in a tank level of 0.0; and that 20 ma. results in a tank level of 15.0 feet. Next, click on the cell
to the right of the title Filter sec and enter the value “1000”. This sets the analog input’s filter time
constant to 1000 scans to slow down its response to transients. Finally, set the high and low output limits
to 30.0 and -10.0, respectively to give some under/overrange space. Your panel should look like the one
below.

21

Getting Started

Maodule Type: Analoglhput

Module name. this instance: [T ankLyl —} '] Save | X Cancel |
Toggle Descr/M u:utes|
Description:

todule zcales raw Al's to give floating point engineering units [EL] result,

[f tpe=0, unit engages current zenze resiztor and uzes 4-20 ma. calibration.

[f tppe=1, unit dizconnectz current senze rezistor and uzes 0-5 v calibration

Filter conztant zetz low pazs filtering.. larger conzstant glows rezponze to changes on input.
Inputs and constants: Outputs ko Data Bases:

[tern: Yal Azzigned: [tern: MHame in D atabaze:
Inout Channel #.1-6 1 ELI bt

1=enable. O=hold 1 Haw &40 output |TankL'-.fI.F|aw
Tupe; 0=4-20ma. 1=0-5v {0

Edatdmaory 1]

Edat20maorby 15

Filter conzstant 1000

High outout lirit E L1

Low output limit EU |-10

Figure S AT Module With Properties Set

OK, we’re done, click on the Save button and we will return to the screen showing our I/O. It should look
the same as before except that the name for card 1’s channel 1 entry should have changed to TankLvl.

Now we’ll set up relay output channel 1 to be our tank low alarm. Click on the digital output
channel 1 entry and you should get a channel type selection panel such as shown below:

Choose Digital Output Type
" Drigital Qutput Standard
€ Drigital &larm Output

™ Pulze Duration Dutput

Select Digital Output Standard, and the new module screen should appear as shown below:

Module Type: DigitalJutput

Module name. this instance: || —+ 1 Save | X Cancel |

Toggle Descr/Motes |
Dezcription;

todule copies input statuz from statuz data baze to designated relay output,

|nputz and constants: Cutputs to Data Bases:

[tem: Wal Azsianed:
Dutout channel # (1-41 1
[nowk gtatus that controlz

Figure 6 Digital Output Configuration Panel

22

Getting Started

Here, we just want to give it a module name of “LowAlrm” and click on Save. Similarly, click on card 2’s
Chan 2 point and name it “HiAlrm”. We’re now done with identifying I/O for this project. Our I/O
representation should look like this:

=4 ¥153 C:\R3DelphiFiles\R3ProjctiTankTest.red

= e GEN
r— g E’G - - - RE’ D‘Z‘RE’ e O=RaM Dooc
Open Proj Save As Save Setup WD Compile Send Pgm Terminal ‘Watch Resssign Document
Setup /0 Channels it R DATABASES . i
& ’ : . : X Close ;]
C Click on unassigned 1/0 point [bracketed] to define for spstem. T l 8 Skings
|—- Qr, click on any previously azsigned [not bracketed] 140 point to edit. Floating Pt] Integer Status
C
|—- Analog Inputs Digital Inputs Digital Dutputs Analog Outputs System BoctTrg
Sygtem.Logon
. |Syatem SechTrg
System SecTrg
[Chan 8]
[Chan 7]
[Chan E] [Chan E]
[Chan 5] [Chan 5]
[Chan 4] [Chan 4] [Chan 4]
[Chan 3] [Chan 3] [Chan 3]
[Chan 2] [Chan 2] Highilrm [Chan 2]
TankLyvl [Chan 1] Lowsdilm [Chan 1]
COM COM
Ram= 0/1024 Pgm Flash= 25928/28928 Logger Flash= 0524283 Meed to save... Meed bo compile. ..

Figure 7 I/O Channels With I/O Modules Installed

Notice that the first analog input channel has the name “TankLv]” and that the first two digital output
channels are named “LowAlrm” and “HighAlrm” respectively. The remaining channels have their names
in braces indicating that they are unused. We’re ready to leave this screen and do some other things. Click
on the large Close key in the upper right hand corner and you’ll get the main project design screen
illustrated in the figure below:

23

Getting Started

_] :

= CE - Wl > Fo e oo o=ran [)56

Open Proj Save As Save Setup W2 Compile Send Pom Terminal Wistch i Reassign Document
i Fuamls £ - & L i ;
Read/Edit Nates & Desian : R 3 MODULE LIBRARY : R3 DATABASES
05 at last save-: ™ Debug 1/0 + System] I ath] Contal | Statistics | T | mx] Strings]
109 ™ Engineer Display] Commun. | BASIC Ladder l Tables] Flaating Pt l Integer | Status |
Date of last save: e ;
Modules in this B3 Project
3/4/2003 5.12.05 P — . G | Smbel
o Yz | Math] Eontrol] Stats] Comm] TarkLviOut
: ; Highalm...Digital0 utput
Deetails Lovadslrn.... DigitalOutput
[H] System... SysSetup
Clone TankLvl.. Analoglnput
Delete
s
Search
Ram= 0/1024 Pgm Flash= 3251232512 Logger Flash= 0/524253 Meed to save... Meed to compile. ..

Figure 8 Main Project Panel

Notice a few things here. In the middle of the screen are two sets of tabs...R3 MODULE LIBRARY, and
MODULES in this R3 Project. On the right side of the screen is a third set of tabs labeled R3
DATABASES. Here is what they mean:

R3 MODULE LIBRARY Preprogrammed modules we can use to design our project.
MODULES in this R3 Project...Modules we have configured and installed in our project.
R3 DATABASES...The outputs of modules we have named and installed in our project.

Now, click on the tab labeled I/O + System in the Modules in this R3 Project sct of tabs. In the middle of
our screen should appear a list of I/O modules in our project. In our case, so far we have:

HighAlrm...Digital output
LowAlrm...Digital output
System...SysSetup
Tanklvl...Analog input

We configured the HighAlrm, LowAlrm and TankLvl modules; the system automatically installed the
System module, since all projects need it. Notice that each name in this list is composed of the name we
gave the I/O module (e.g., “TankLvl”), followed by its module type (e.g., “Analoglnput”).

On the right of our screen we have the RUG3 databases for our project. Only one is visible at a time. Click
on the Floating Pt tab to see the floating point database, as shown. It should have an entry named
TankLvl, the name we gave our first analog input module, plus two outputs from the system module called
System.BattV and System.TempF. Each time a module is added to the project, its outputs become entries
in the databases. In the case of the analog input module, the analog input module takes the raw count from

24

Getting Started

the board’s A/D converter, scales it as we have specified to the range of 0.0 to 15.0 feet, low pass filters it,
and places it in the floating point database. Therefore, our tank level is now in the floating point database
where it can be used as an input by any other module.

Setting Up Setpoints

Now we need a pair of high and low alarm setpoints. At the top of the main project screen above,
notice the set of tabs labeled R3 MODULE LIBRARY. This is where the preprogrammed modules reside
for us to use in designing our projects. Modules and other tools for configuring our project are divided into
functional categories such as Math, Control, etc. You can get to a module by first clicking on the tab
representing the type of function you want, and then selecting the specific module from a list. For example,
we want a setpoint module, which is in the I/O + System list. Click on the I/O + System tab in the R3
MODULE LIBRARY. (A setpoint is really an input point...it just comes from an operator.) You should
see a list of /O modules appear in the middle of the screen as illustrated below:

@!c

@ [- [5]x]|
Ee¥ [
= PE - ll > [oo o=ran [S5
Open Proj Save As Save Setup WO Compile Send Pgm Terminal Wistch Reassign Documernt
A vy W, i S W h
Read/Edit Nates & Design = R3 MODULE LIBRARY - R3 DATABASES
05 at last savé: " Debug Dizplay] Comrmur.] B&SIC] Ladder] Tables] T | R Strings]
140 " Engineer 170 + System Math | Cortiol | Statistics | FlostingPt | Intsger Status
Date of last save: T . o
l—_ % naloglnput yztemn. BoatTrg
11/18/2003 1:18:07 P.M AnalogDutput Systern Logon
e o Anemanmeter Spstem.SechTig
U DiginCount System. SecTig
Digital®larmCutput
Digitall nputD C
Digitald utput
Pulzeliurationln
PulseDurationCut
PulzeT aFlow
Setpoint
ShaltE ncoderlnput
SyzSetup
Ram= 01024 Pom Flash= 2592828925 \Logger Flash= 0/5242&5 Meed to save... Meed to compile. ..

Figure 9 Selecting a Setpoint Module from Module Library

Click on Setpoint and you will get the setpoint module’s entry screen as presented below:

25

Getting Started

todule Type: Setpoint

todule name, this instance: || —+ " Save | X Cancel |
Toggle Desu:r.n"Nu:utes|
D' ezcription:

Setpoint module holds a user entered setpoint. Prompt zting is a descriptive ztring up o 16 characters for A
uzer prompting. Example; 'Tank high alarm, ft='

The trigger input farces installation of the default value.

[F output greater than max allowed wvalue, then output will be set to max allowed value.

IF output lezz than min allowed wvalue, then output will be zet to min allowed value. w
Inputs and congtants: Cutputs to Data Bazes:

[tem: Wal Azsigned: [tem:

Prormot ztring Walue uzer entered: SF

Triooer inztall default M e value triooer MewTrg

Default value

b ax allowed walue
Min allowed value
Wigibilibw 10,721

Figure 10 Setpoint Module Configuration Panel

This is the type of screen you will get whenever you select one of the modules from the module library.
Each module consists of a module name, which you will supply, a description, a set of inputs and constants,
and a set of outputs. The cursor should be in the setpoint screen’s name edit box, so let’s name this setpoint
“LowAlrmSP”. Do this by typing “LowAlrmSP” into the name edit box. When you have entered the
name, the module’s output name will become LowAlrmSP.SP. Now, click on the cell to the right of
Prompt string in the Inputs and Constants list box. A new edit box with our cursor in it will appear just
below where we entered the module’s name. This is where you must enter the setpoint prompt that the
operator will see when he goes to the setpoint list in the RUG3’s menu system. This must adequately
describe what we want the operator to enter for a setpoint. Therefore, enter “Tank low SP ft=". We’ll not
enter the other properties now. Note that in general, unnecessary input properties can be left blank. Now
click the Add to Project button to save this setpoint to the project. Notice that after we save this module to
the project, our new setpoint appears in the floating point data base. Similarly, select another setpoint
module from the I/O + System tabbed list and install the high alarm setpoint.

26

Getting Started

ol . GEN
= . CW - [l > e oo o=ea [550
Open Proj Save As Save Setup WD Compile Send Pom Terminal Watch Reassign Documert
e Mode... i R G o P
Read/Edit Nates & Des R3 MODULE LIBRARY ; R3 DATABASES
| - * Design]
§Dg at last save: Debug Display | Commun.] BASIC | Ladder] Tables | T= | R=] Strings]
[109 {~ Engineer 170 + System] hath | Contral | Statistics] Floating Pt l Integer | Status]
| ;
iDate WAER R Modules in this B3 Project HibmSP SP
||3/4/2003 5:12:05 Pt LowdlmSn 5P
| . 140 + Sys] Math] Control | Stats | Eomm] DT P
| : ﬁ System Batty'
’ i Systen. TempF
E ot TarkLl Out
D—El Lowudslm... DigitalOutput
! ol LowdlmSp...Setpoint
| one Syztermn. SpaSetup
E‘ TankLvl...Analoglnput
Delete
! =
Seanch
Ram= 01024 Pgm Flash= 3251232512 Logger Flash= 0f524288 Meed to save.., Meed to compile..,

Figure 11 Example Project With Setpoints Configured
Connecting Modules Together

We now have six modules in our project and five entries in our floating point data base. It’s time to begin
hooking these modules together and engaging other modules that perform tasks that our project needs. We
do that by selecting modules from the module library and taking the outputs of our previously configured
modules, which are in one of the data bases, and dragging them into the inputs of modules that do the work
we want done. The first module we need is the AlrmHil.o module from the Control tab. Click on the
Control tab in the R3 MODULES LIBRARY. Now, select AlrmHiLo from the control module list. The
AlrmHiL.o module configuration panel should appear. Type “TankHiLoAlarms” in its module name edit
box. This module will compare its input with its high alarm setpoint input and if the input exceeds the
setpoint for the specified delay time, it will turn on its high alarm output. Similarly, it will also compare its
input with the low alarm setpoint and turn on the low alarm output if the input falls below the low alarm
setpoint for more than the delay setpoint. We want our tank level to be this module’s input. To make that
assignment, we must drag our TankLVL.OUT entry from the floating point data base over to the Input
cell in our module and drop it. Go ahead and do that now. Similarly, drag the HiAlrmSP.SP entry from
the floating point data base over to this module’s High alarm setpoint cell. And drag the LoAlrmSP.SP
entry from the floating point database and drop it in the Low alarm setpoint cell. Finally, enter the value
“7” into the Delay sec cell. This sets the amount of time the tank level must violate the setpoints before this
module will turn on either alarm output. Your module should look like this:

27

Getting Started

£ .

= CW & Wl > [ot 1] e R
Open Proj Save As Save Setup WO Compile Send Pam Terminal Wistch l Reassign Documernt

Maodule Type: AlrmHiLa v 2

o R3 DATABASES

Maduls name, this instance: |TankHiLuAIarms —} 1 Save ‘ X Cancel | :

Toggle Descn"NotesJ T : | R] Shings]
Description: Flaating Pt l Integer] Status |
‘When enable=1 or blank, compares the input level with the designated setpoint. |f the input exceeds the

setpoint for the designated delay seconds, then the high alam output is turmed an. [F it falls below the low Hi&lmSP.SP

alarm zetpoint for the designated delay seconds, then the low alam iz turned on. Delap=0 dizables alarm.

Delay vacant gives no delay. There iz no delay on alarm turn off. Alarm output state remaing unchanged if System Batty

enable is falze. Timer range is 0-32767 seconds. System, TempF

TankLwl.Out

Inputs and conztants: Outputs to Data Bazes: nRLvl

|kem: Wal Azsigned: |kerm:

Enable 1 High alarm outout TankHiLadlarms. Higlm

Inout level TankLyl.Out Loy alarmn outout TankHiLodlarms. Lodlmn

Hiah alarm setogint Higlm5F. 5P Delav Timer TankHiLodlarms. Delay

Low alarmn setocint LowadmSp 5P

Delav, zec

Ram= 01024 Pgm Flash= 32512132512 Logger Flash= 0/524258 Meed to save,,, Meed to compile. .,

Figure 12 Configured HiLo Alarm Generator Module

Notice that for each module input cell, you can enter either a constant value into the input cell, drag a
signal from a database into the cell, or leave it blank. If you leave it blank, it will be given a value that is
usually transparent to the module’s math (0.0 or 1.0). However, it is best to enter all values to be certain.
Also, the compiler will handle value type conversions such as floating to integer, so you need not be
concerned with matching the type of signal a module is expecting with a particular database. The
exception is that module inputs that expect strings must have either string constants or strings taken from
the string database. Basically, the AlrmHil.o module we just configured compares its input (tank level)
with its alarm setpoints, and, if the alarm condition exists for at least 7 seconds, it will turn on its
corresponding alarm output. Now, click the save button to save this module to the project.

Your project screen should now look like this, where the new AlrmHil.o module is shown in the

list of control modules, and the high and low alarms are shown in the status database along with some
system statuses:

28

Getting Started

File Setup
= .DE & [l > e[oo [omraw [eE
Open Proj Save As Save Setup W Compile Send Pgm Terminal Watch . Reassign Document
o Mode... o : p ; T : o
Read/Edit Notes — N ‘R3MODLULE LIBRARY o R3 DATABASES
. + Design
05 at last save: ~ Debug Display | Commun | BASIC | Ladder | Tables | T | B2 |
109 " Engineer 140 + Spstem] Math Control l Statistics] Floating Pt] Integer
Date of last save: — -
. Modules in thiz B3 Project
3/4/2003 512:05 PM o e e) Do et
~ + €
£ "y s g 25 il . |System SecTig
: Details TankHiLadlarms.. AlmHiLo T arkHiLatlarms Hiddm
TankHiLo&larms. Lodlm
Clane
Delete
@
Search
Ram= 0f1024 Pgm Flash= 32512/32512 Logger Flash= 0524288 Meed to save... Meed bo compile. ..

Figure 13 Project Screen After Alarm Generators Added

If at any time you wish to modify the setup of any module in the system, you can simply select the module
from the project module list in the middle of the screen and click on the Details button. We want to do that
now so that we can connect the alarm generator outputs to our relays. In the project module list in the
middle of the screen, click on the I/O + Sys tab, then click on HiAlrm...Digital Qutput, then click on
Details. The relay output module we set up at the beginning should appear. Notice it is missing its input
specifier. This is because at the time we assigned the analog input and relay outputs, we had not yet
specified the alarm generators. Also, before we can drag the output from the appropriate alarm generator to
the input of the relay output we must select the status data base instead of the floating point data base that is
presently showing. Do this by clicking on the Status tab over to the right in the data base window. Your
screen should look like this.

29

Getting Started

i _Petup
E) . 1 GEN
= . CW -~ [l > 2= oo [] o= 0
Open Proj Save As Save Setup KO Compile Send Pam Terminal Wistch Err Reagzsign Document
Madule Type: Digialdutput : : L g
Module name, this ingtance: |Highﬂ-\.lrm —D Save ‘ X Cancel | 2 DATABASES . :
Togagle Descr/Motes T] R Strings]
Description:

Floating Pt] |nteger Status

Module copies input status from status data base to designated relay output,

Syztem BootTrg
System. Logon

. |System SecTrg
TankHiLodlarms, Hidm

TankHiLodlarms. Lol
Inputs and constants: Outputs to Data Bases: afsRIERE IS Laam
Item: [l Assioned:
Cutout charnel # 1-41 2

Inout status that controls

Ram= 01024 Pgm Flash= 32512132512 Logger Flash= 0/524285 Meed to save... Meed to compile...

Figure 14 Digital Output Configuration Page With Status Data Base Showing

Now drag the TankHiL.oAlarms.HiAlrm entry from the status database over to the relay output module’s
Input status that controls cell. This will cause the TankHil.oAlarms.HiAlrm status output to control the
relay. Similarly, call up the LowAlrm...Digital output module from the project module list and drag the
TankHiL.oAlarms.LoAlrm point from the status database over to the module’s control input. At this
point, this configuration could be compiled and sent to the RUG3 to run. It would read the analog input
and control the relays properly. Before we do that, let’s add a display to finish the project.

30

Getting Started

LCD Display Setup

Adding a display to the system will make an operator’s job a lot easier than if the unit has no
display since we can show him at a glance what the tank level is and how the setpoints are set. To add a
display, first click on the Display tab in the R3 MODULE LIBRARY window. Your screen will change

to this:

74 Y205 C:\R3DelphiFiles\RIProjct\TankTemp.rgd

hetip
v O}~ Hll » [oo c=e [135
Open Proj Save As Save Setup /0 Compile Send Pgm Terminal Wistch st Brrors Resssign Documerit
Read/Edit Notes | M(?Dd[?;si - %fw’ R3MODULE LIBRAR W Ri3 DATABASES
0% at Ia';tl-s@_\lfe:.}_-:-" e Debﬁg “Q l/O+System | Math | Conal | Statistics T | | Stings
193 | " Engiresr | Display | Carnun. I BASIC I Ladder I Tables Flaating Pt | Integer Status

o] ate of Ita's.t save : i :] -
Displays in project: HithmSP.MewTrg

810/2007 10:39:01 Al i
N ttn 2 . Part ... - |LowalmSp.NewTrg
@ (] New Display |} Syatem.BootTrg
R, it Di " |Spstem Logon
: % [EditDisplay | ShetemsecsTig ..
E‘ Delete Dsp | Spstem.SecTg 1
| TankHiLodlams. Higlm %

- | TankHiLodlarms.Lodlm B

b

| Meed ko save... Meed to compile... 4

P, e u%lt

[Pam Flash= 23296/23296 Looger Flash= 0/524288

[Ram=10j1024

Figure 15 Display Selection Tab in Module Library

There are not yet any displays defined, so the display list is blank. Click on New Display and the display
definition screen will appear:

31

Getting Started

= .bE -& - I* 'ﬂg [J== "ot - Dmea [35¢

Open Proj Save As Save Setup I.l'O Compile Send Pgrn Termlnal Watch = ReaSS|gn Document
......... : R ; ; =
..5".&

Dlsplayﬁﬂeport Edllul - ST, I =
e s _E@D"TABASES; i e
Display tie for menus| pspronld 2 7 save x| mx | stings E3
Digplay text.. uge @3 & where variable data should appear. DSE #: Ig :'j % Cancel : Finating Pt I ks e |
Update trigger: o
I | Swetem.BootTrg 1
o Syztern. Logon g
;;, Spstem. SecTig '
- - | TarkHiLadlarms. Hidlm |
“Wariables on selected line: | TankHiLoAlams Ladim |
’ 4
Fi
i
ti1 1l
f? :
Z.g
i
i

IiRam= 661024 inm Flash= 1836/32512 |L0gger Flash= 04'524288 |D0ne complllng N0 Errors Y

Figure 16 Display Editing Panel

First, we must name the display. The name we enter will be used in display lists presented to the operator.
To do this, in the Display title for menus edit box above the large window, type in “Main display”. The
large window to the left is where you will enter your actual display definition. Now, move the cursor to the
upper left corner of that large window and click. We’re now ready to enter our display data. Type the
following into the display window:

Tank ft=QQ.Q
Lo=@@.@ Hi=@E.@
Hi alarm ON=@
Lo alarm ON=@

Your screen should look like this:

32

Getting Started

Dizplay/Report Editor

Digplay title for menus'Main display DSPPort)! = —D Save
Dizplay text...uze G0 where vaniable data should appear. Depg |0 % ¥ Cancel
Tank ft=@@ @ |lpdate trigger:

Hi=@@ @ Lo=od, @ |

Hi alarm ON=@

Lo alarn OHE=@

Yarables on zelected line:

=L L0 00 =) O CT e L0 O —L

Figure 17 Display Defined

Notice the use of @@.@, symbols. Basically, anywhere you want active data from a data base to appear on
the LCD, you specify the location and format by using the @@.@, characters. ‘@’ symbols and decimal
points are regarded as one field with the location of the decimal point specifying where the decimal point
will usually be placed on the LCD screen. Also, notice that since the RUG3’s LCD has two lines of 16
characters each, we must pay close attention not to exceed the 16 character line length. We can have as
many lines as we want for any single display (up to 100 lines) but only show two lines at any time. Now,
we must tell the RUG3 what data to present in each of the @@.@ type fields. We do that as follows. First,
click on the “Tank ft=@@.@” line. Now notice the list box to the right of our display window with the
numerals 1...10 down its left side. That is where the tags from the databases go. For each @@.@ field in
our selected display line we must drag in one entry from a data base and drop it into the list box beginning
with the top entry in the list box corresponding to the leftmost @@.@field in our LCD display line. Go
ahead and drag TankL.vl.OUT into the top line of the Variables on selected line list box. (You may have
to first select the floating point database on the right.) Now click on our display’s second line, where we
wish to show the two alarm setpoints. For each of the high alarm setpoint and low alarm setpoint in the
large window, drag the corresponding alarm setpoint from the floating point data base and drop it on the #1
line and #2 line of the list box (HiAlrmSP.SP and LoAlrmSP.SP, respectively). Remember to click on the
desired LCD line in the large window before dragging an entry from the database. Now click on the LCD
line that reads “Hi alarm ON=@”. On this line, we must drag the high alarm entry from the status database
(TankHiLoAlrms.HiAlrm) and drop onto the top location in the variables list box. Similarly, drag the
low alarm entry from the status database (TankHiLoAlrms.LoAlrm) and drop onto the top location in the
variables list box. We still have one more thing to do before we’re done...we must specify the display’s
update trigger. With the RUGS3, the display being presented updates only when triggered, enabling the
programmer to specify the timing of display updates. A trigger is an event, generated by a module, that is
true for only one program scan. Using a trigger, the programmer can make the display update based on
time, or based on an event such as a communications reception or keystroke, etc. We’ll have the display
refresh once per second. To do that, from the status data base, drag the variable named System.SecTrg
into the display’s update trigger cell. This signal is installed by default into all projects. Your screen
should now look like this:

33

Getting Started

Digzplay/Report Editor

Dizplay title for menus'Main display DSPPort)! = —D Save
Digplay text.. uze (@@ (@ where vanable data should appear. DS # 0 = x e
Tank ft=0@ @ |lpdate trigger:

Hi=@@. @ Lo-go. @ |System.SecTrg

Hi alarm OH=@

Lo alarm OH=@

Yarables on zelected line:

HialrmSP.SP
LowdlrmSp. 5P

=L 0 00 =] O LT e L

Figure 18 Display Panel Showing Two Setpoints Installed on Line 2

Now click the Save button to save this screen.

Saving the Project

Now, before anything else, let’s save the project. Do this by clicking on the Save As menu item in
the tool bar at the top of the form. Choose a name such as “TankTest” for the file and click OK.

= . CE - lll > S oo 1] o=ew ()N

Open Proj Save As Save Setup 1D Compile Send Pgm Terminal ‘Wyatch Er Ressz=zign Document

Figure 19 R3SETUP Toolbar
Compiling the Project

To compile the project, click the green Compile button on the toolbar. When done, a panel will
show any errors the program encountered. There should be no errors in this setup. If there are any errors,
you must correct them before the program will let you download the project to the RUG3. If no errors are
present, click on the SendPgm button to send the project to the RUG3. Note that you do not have to click
the Compile button before sending the program to the RUG3, R3SETUP will compile automatically before
sending the program. The terminal screen will appear and will show you the PC’s progress in sending the
configuration file to the RUG3. It will look like the screen below:

34

Getting Started

Terminal:

REI REI E)ZRB %mﬂgéﬁe: E;I:I;Hmf x Cancel

SendPom| _Send05| SendRIC g
Switching E3i to RUSID protocol. . .

Sending command t— h=l+ B? oecoeaw

R3 program is ic Load Progress

Sending command Lt
3 responded. . . Loading B3 Program... Fepeatz=0

Figure 20 Example File Load Progress Screen

When done with loading, the RUG3 will begin running the program. Look at the RUG3’s LCD. You
should see the following screen. If this screen is not visible, hit the [-] key to present it. Remember that
from any display, you should be able to get back to the system menu by hitting the [-] key.

System Menu:

1DSP, 2SP
5CLK, 7LCD

From this display you can press key [1] to access the display menu and select the display we designed.

You could also press key [2] to access the setpoints that control the high and low alarms that are routed to
the two relays we used. Note that we did not use the setpoint default settings, so the setpoints may have
wild values. You should set the setpoints to reasonable values such as 4.0 feet for low alarm, and 14.0 feet
for high alarm. That’s the end of the tutorial to illustrate how you design a configuration file for the RUG3.
If you look at the lists in the module library, you will notice a large number of useful preprogrammed
modules. You can install any of these into your program to implement a range of control strategies. No
matter how complex your project is, the process is the same...select and name a module, then drag items
from the databases into each module’s inputs. As you save each module, its outputs become entries in the
databases for use by other modules

35

Hardware

CHAPTER 3...HARDWARE

Overview-RUG3

Each RUGS3 consists of a single board with I/O connections at the top and bottom. Units are
available with or without steel enclosure and with and without LCD display and keyboard and other options
as identified in the following table. Note that a two channel optically isolated analog output option is
available for any of the listed models simply by appending an ‘O’ to the part number.

Table 2 RUG3 Models

MODEL

FEATURES

MOUNTING

RUGS3B, board only

Mounting holes at board corners

RUG3BL, board with LCD

LCD only, no keyboard

Mounting holes at board corners

RUG3C, steel case None DIN rail
RUG3D, steel case with LCD LCD and keyboard DIN rail
RUG3P, steel case with flange LCD and keyboard Through panel cutouts

OPTIONS:

O Analog outputs, 2 chan, 4-20 ma. | Internal
M Modem, 300 baud Internal
L LCD, 2 line X 16 char. Internal
MR Mechanical relays, 10 amp Internal
SR Solid state relays, 0.5a/48VDC Internal

Refer to Chapter 10 for unit dimensions and mounting requirements.

37

Hardware

— e

RUG3 RTU p—

= CCICICICICIGC
0 0/00n/eom

T e T IPRAR S

Figure 21 RUG3D Face Photo

Figure 22 RUG3D Bottom Ports and Relay 1/0 Photo

Figure 23 RUG3D Top 1/0 Photo

In addition to the above hardware, the RUG3 can be equipped with a 2 line by 16 character LCD and
keyboard as shown in the photos. The following figure provides details of the RUG3 hardware.

38

Hardware

RUG3 BLOCK DIAGRAM

ﬂ. - -
CcPU RAM FLASH
TMS430F149 K 80K
e
LOGIC ‘ ’
Rs2m DispLavl |
e |t ||, o
- " puam _'—%_—'
.— S | oispLay |
RS2321USB CHAN S
DISPLAYMEYEOARD
2 16 BAGKLIT LCD DISPLAY
TACTILE KEYEOARD
[+ 2 s el s -0 A o]
(s J 7l s oMol .)Y Heves
DATA LOGGING FLASH |
2 M Bytes —)
wors i isbx:
51 | 1281t B=
A024 (7

oo =P
ldmm _ 3¢ "“"’E“
I [
===k F S Sl

R3IBLE.COR

LOGIC

SWITCHING REGULATOR
T 4) +IVOCPWRIN
REGULATOR | GND
A SVDC Reference
)
.‘wlr
=
o
RR4 E
o
{ -4
S oRR1 8
2
= RR2 2
2
RR1 2
=
. IR
< W . /) DISREF.
.
- [. {0 07
It =
- .) DIE
L d W
< | .) DIS i
e :
< (o« Domu g
o
) &
« [A)——$——@ Di:
- | M _._
¢ 7 - | D2
« .) ol
| GND
off, >
Batv-e B = §
POWER . D aw
INVERTER 1M 5
2w 3
IR 4 ‘@
Anemometer Amp S e | 7 AIGANEMOM.
Als
Transient L 5
| Protect =
o
“« ol | o wo
12 Bit 4 BattV 2
8 Chan 1P Fiw ;
L Tamp a2
| At
| o) anp

Figure 24 RUG3 Block Diagram

39

Hardware

Mounting on DIN Rail

DIN rail mountable units have slots on the right and left sides, and springs installed on the back
plate to affect secure mounting on standard 7X35 mm din rail. Assuming you are mounting the unit on a
horizontally oriented DIN rail mounted on a vertical backpan, use the following procedure to install on the
DIN rail:

e Place the RUG3 on the DIN rail with the bottom of the DIN rail inserted into the bottom of the
RUGS3 s side slots.

e Push up firmly with your thumbs on the bottom face of the RUG3 (where the relay terminals are),
while at the same time, pushing the top of the RUG3 toward the backpan with your fingers.

e When you feel the top of the RUG3 snap onto the top of the DIN rail, release the pressure with
your thumbs and let the RUG3 slide downward slightly until the DIN rail’s top flange is secure in
the top of the RUG3’s slot.

e Check to make sure that the DIN rail is secure in the slots on both sides of the RUG3.

Removing from DIN rail

To remove the RUG3 from a DIN rail, follow this procedure:

e Push up firmly with your thumbs on the bottom face of the RUG3 (where the relay terminals are),
while at the same time, pulling the top of the RUG3 toward you with your fingers.

e When you feel the top of the RUG3 disengage from the DIN rail, let the RUG3 slide down slightly
until the RUG3 comes free of the DIN rail’s bottom flange.

Applying Power to the RUG3

RUGS3 units should be powered from 13.5 VDC+/- 20%. All RUG3 units can be powered from
120 VAC using a standard 12 VDC wall transformer as shown in the figure below. For applications using
DC power such as solar power applications, you can apply power to the power terminals as illustrated
below. Refer to Table 1 in Chapter 2 for unit total power draw.

40

Hardware

On O] mewn
ﬁd_b rtstststststs

JE55d]
9959555551
TTEEEEEEEE

12VDC
WALL
XFORMER

120 VAC Power Wiring

i

H
H
sss=zz2:z8 Fi=:235¢

DIGITAL INPUTS

ANALOG INPUTS

RUG3 RTU

|:|Od_b B 0968 |
E i iEREREEE
+L4
Charger
12V Batte_rr | AC or Solar

Battery Backup Power Wiring

Figure 25 RUG3 Power Wiring Examples

41

Hardware

Display/Keyboard Interface

The display is mounted on the circuit board using a 16 pin header and 2 pin backlight connection.
The keyboard attaches to the circuit board using an 8 pin ribbon cable. If you must remove the circuit
board from the enclosure, the ribbon cable will pull out from the connector on the board. To re-install, lay
the keyboard face of the enclosure on a soft surface and place the circuit board face down on the four
mounting tabs. Using needle nose pliers or forceps, grab the keyboard ribbon cable and gently force into
the keyboard connector. Then install the back mounting plate with four screws.

Reset Button

A reset button is located to the left of the programming port on the bottom face of the unit.
Pressing the reset button will stop the program and cause it to reboot. You will have to press the reset
button repetitively as many as 15 times to cause the unit to abandon the program and revert to the system
menu. To confirm that the program has really stopped, observe the menu on the serial port. If it does not
include item #1 to start the program, then the program has been declared faulty and has stopped. The
program will restart automatically within 60 seconds.

RUG3 RTU

m_r'
w2 U7y
RR2 [0,/
wa U7
RRE {7
w1

PHR

GHD

Lo A
wr U

Mini-USB

STD USB to PC

PN R3CBLUSB

USB HOOKUP . SERIAL PORT HOOKUP

Figure 26 USB and Serial Port Hookup
RS232 Ports

All RUG3’s are equipped with two RS232 ports. Port 1, labeled P1 on the back plate, is used for
program loading. It is always set for 9600 baud, no parity, 8 bit word, 1 stop bit. The second serial port,
labeled P2, is general purpose and has its baud rate and other parameters set by the ComSetup module. For
either port, in order to interface to standard PC RS232 ports, you will need a modular to DB9 cable adapter
(our part number R3CBL232).

42

Hardware

USB Port

All RUG3’s are equipped with a USB 2.0 port. It enables communication between the PC and the
RUGS3 as if the PC were connected to RUG3 port 1. It is used primarily for program loading, but can
perform all functions of serial port Plincluding general purpose serial access, watch window access, etc.
To use the USB port, you will need a USB to USB-mini cable (our part number R3CBLUSB) and USB
drivers for the PC. Install the cable between the RUG3 and your PC, then launch R3SETUP and change
the COM port designation to the port used by the USB cable (probably COM4 or COMS). If your PC does
not recognize the RUG3 device (CP2102) then you will need to install the USB drivers for the RUG3 as
described below. Note that when the USB cable is installed, the RUG3 will disable port 1’s RS232 port
since both USB and RS232 port 1 use the same UART in the RUG3. Note: on board revisions 10 and
below, be sure to apply power to the RUG3 before plugging in the USB cable; and remove the USB
cable before removing power.

Installing USB Drivers

You can obtain the USB drivers from our web site: www.rugidcomputer.com. Go to the
‘Downloads’ page and click on ‘RUG3 USB Drivers’ to download to your PC. The download will appear
as ‘CP210X_Drivers’ on your desktop; or the driver package will open automatically. Follow the
instructions for installation on your computer. When installed, the software will redirect communications
from the next available COM port to the USB port.

Flash Memory

The RUG3’s flash memory does not require power to retain its contents indefinitely. It holds the
RUGS3 boot loader, operating system, analog calibration installed at the factory and user configuration file

(program).

Changing the Battery

You should only need to replace the onboard lithium battery if the unit has been unpowered for an
accumulated time of at least a year. To change the battery, remove the RUG3 board from its enclosure;
then remove the battery from its holder. The battery holder is just above the reset button on the board.
Install a fresh 3 volt CR2032 lithium battery in the holder with the positive terminal up. Re-install the
RUGS3 board into the steel case, if any. Power the unit up to confirm that handling the board has not
corrupted any memory contents or time/date setting. If necessary, set the time/date. Power the unit down
for 10 minutes and then reapply power. If the realtime clock shows the correct time, then the new battery is
working correctly.

Removing the Board from its Case

To remove the RUG3 board from its case, lay the keyboard face of the enclosure on a soft surface
and remove the four Philips screws holding the back plate in place. Remove the back plate and then firmly
pull up on the board to remove it from the case. This will also pull out the keyboard ribbon cable from its
connector but will not harm it.

43

Hardware

Installing the Board into the Case

To install the RUG3 board into its case, lay the keyboard face of the enclosure on a soft surface
and place the circuit board face down on the four mounting tabs that correspond to the four holes in the
corners of the board. Using needle nose pliers or forceps, grab the keyboard ribbon cable and firmly force
it into the keyboard connector. Take care not to bend the keyboard ribbon cable sharply near the connector
or you could crack one or more silver traces and render the keyboard inoperative. Then install the back
plate with four screws.

Loop Supply

The RUG3 has a power inverter that boosts the unregulated 12 V bus to a regulated 24 VDC for
powering analog loops. It is capable of delivering up to 120 ma. Its screw terminals are located on the
analog input connector. Its most negative terminal is labeled GND; its most positive terminal is labeled
+24. The loop supply can be turned on or off by controlling the loop supply control bit in the SysSetup
module. It can also be attached to the unit’s unregulated, nominal 12 VDC power supply by controlling
another bit in the SysSetup module. The purpose of these controls is to enable you to use the loop supply
to control power to external instruments. IMPORTANT...if power supply voltage to the unit falls below
nominally 10 volts, the loop supply inverter that boosts voltage to 24 volts will be shut off to protect
against the unit drawing excessive power in its attempt to maintain 24 VDC output. The loop supply will
be re-engaged when input power supply voltage rises above 11 VDC.

Digital Inputs

The RUG3 provides eight digital inputs. Digital inputs are self-powered and are compatible with
dry contacts or with logic inputs in the range of 0-3V to 0-12 VDC referenced to the RUG3 GND pins.
Normal excitation voltage is 4 VDC. Trip threshold is nominally 1.5 V above ground. Each digital input
channel can serve any of several functions depending upon the module you use to bring the digital input
into the system as defined in the following table. Note that to read a shaft encoder requires two digital
inputs per encoder.

Table 3 Digital Input Function Choices

APPLICATION TYPE MODULE TO USE
Dry contact sensing DigitallnputDC
Counting up to 110 counts per second DiginCount
Measuring pulse durations PulseDurationln
Reading shaft encoder ShaftEncoderInput

The figure below presents the proper method to connect contacts to the RUG3.

44

Hardware

Dry Contacts

|
" i
Eseszozc! %isszzs&
‘:::::u.::::.:._:.H::........
DVGITAL IHPUTS: ANALOG INPUTS

RUG3 RTU

ar ﬁ dmb [,F,,

Figure 27 DI Hookup Example

Relay Outputs

The RUG3 provides 4 channels of 10 amp relay outputs that are compatible with both 120VAC
and 30 VDC (MR option) or 4 channels of solid state relay outputs that are compatible with 48VDC/0.5
amp (SR option). Each is a Form A relay, completely isolated from any other connections on the RUG3.
The relays provide 1500 volt isolation between the loads and the RUG3 bus, and have large coil to
conductor spacing to minimize transient to coil coupling. Depending upon the control module you choose,
the relays can be used in several different ways as defined in the following table:

Table 4 Digital Output Function Choices

RELAY OUTPUT FUNCTION MODULE TO USE
On/OFF control of AC or DC load DigitalOutput
Flashing alarm output DigitalAlarmOutput
Pulse duration output PulseDurationOut

Below is a simple hookup example.

45

Hardware

RUG3 Mechanical Relay Hookup RUG3 Solid State Relay Hookup

A ANALOCINRUTS DIGITALINPUTS ANALOGINPUTS

RUG3 RTU RUG3 RTU

BOWER + 3 (o]

SUPPLY

_ _ teagyoe -S| c/
120VAC

| LoAD | DC COIL RELAY

Figure 28 Relay Hookup Example

Analog Inputs

The RUG3 standard analog inputs use a single eight channel 12 bit A/D converter to convert
analog voltages to digital form. Six A/D channels provide accurate analog measurements of external
signals in the range of 0 to 5 volts or 4-20 ma. An AnalogInput software module enables you to select 0 to
5 volts or 4-20 ma operation for each channel under software control. It also includes offset, span, low pass
filtering and range limiting entries. The remaining two channels measure onboard temperature and battery
voltage. These measurements are available as outputs of the SysSetup software module. The board has
onboard precision 221 ohm current sensing resistors that can be engaged by selecting 4-20 ma type channel
in the AnalogInput software module to make the selected channel compatible with the 4-20 ma. instrument
standard. Channel calibration for both 0-5V and 4-20 ma operation is held in onboard flash memory whose
contents are set at the factory. The RUG3 uses the calibration constants to linearize and scale the channel
values in the preprogrammed modules. The figure below presents the proper connection of a 4-20 ma.
transducer. Additional transducers can be connected by connecting their positive terminals to the 24V
positive terminal and their negative terminals to individual analog input terminals. Be sure to observe the
loop supply’s capacity of 120 ma total current, or a maximum of six analog 4-20 ma loops per board.

46

Hardware

E 4-20 ma xducer
-

On Q==
me C.O|

4-20 ma. Transducer Hooku,

Potentiometer

t

E 05V Xducer

RUG3 RTU

On Q)|
GO0

R
GHO
R [
RR1 4
R (7
iz
R
RRI
L]
w17

0-5V Transducer or Potentiometer Hooku

Figure 29 Transducer Hookup to Analog Inputs

Voltage type transducers and potentiometers can be connected also as shown above. For each transducer
you must install a separate analog input software module and designate type of channel (4-20 ma or 0-5V)
as well as engineering units scale factors, filter time constants, etc. You can mix 4-20 ma type transducers
with voltage type transducers without limitation on a single RUG3 simply by choosing the proper
connection (4-20 ma.or 0-5V) in each analog input software module.

47

Hardware

Modem/RS232/RS485 Channel

For audio communications, the optional modem provides Bell 103, 300 baud capability
compatible with 2-wire or 4-wire wireline channels, or audio radios. An onboard software-adjustable
transmit channel amplifier makes the board able to communicate with leased lines or customer owned lines.
An optoisolator provides transmitter keying control of audio radio transmit function. The optoisolator and
600 ohm transformers completely isolate the board from field circuits. The keying circuit employs the
KEY terminal and the TX- terminal. For high speed communications, the RS232 port can be connected to
radio modems, external high speed phone line modems, spread spectrum radios, or Ethernet to serial
converters. The transmit amplitude, mode, baud rate, tone use, protocol, etc., are set using the ComSetup
software module. Transmit amplitude is adjustable over the range of 0 to approximately 3 V p-p into 600
ohms using inputs of 0 to 255 on the ComSetup module. Modem baud rate is 300 baud only and must use
what we refer to as the low tones mode where the RUG3 uses only the lower tone pair of the Bell 103
standard for both transmit and receive functions. This assures that all units can hear all other units. RS232
baud rates are user-definable over the range of 50 to 19,200 baud. The diagram below presents the modem
and RS232 connections and necessary cables to connect to them. The headphone jack is compatible with
common stereo headphones enabling you to listen to the transmit audio in one ear and the receive audio in
the other.

AlElAnemom

g [=] - [=]

EE5E5 8328385 5 5 B £ 225 8§ 8
|[] . U OOt ‘
DIGITAL INPUTS ANALOG INPUTS

RUG3 RTU

Z RELAY QUTPUTS

Headphone Jack

MDM-AUDIO Cable Right angle: PN R3CBLAUDRA
/_W

Figure 30 Modem/RS232 Channel Connections

48

Hardware

Analog Outputs (Optional)

The RUG3 can be factory equipped with a two channel, 12 bit resolution analog output board.
Each channel is optically isolated from all other signals. Each channel functions as if it were an unpowered
two wire 4-20 ma. transducer. Conversion from engineering units to 4-20 ma. is performed by the
AnalogOutput software module for each channel which uses calibration installed into flash memory
during factory test. Connections to the analog outputs are made to screw terminals on a 4 pin removable
screw header on the right side of the unit as illustrated below. Note that each analog output is loop
powered and requires at least 8.5 volts across its output for accurate operation. Maximum allowed forward
voltage across each output is 50 VDC. A blocking diode will prevent damage to the channel from
application of reverse voltage of up to 200 VDC. The figure below presents an example of how to connect
the two analog outputs to a pair of variable frequency drives (VFD’s) using an external loop supply.

e LOOP SUPPLY
- £ 24 VDC
2 -
§aggaassﬁ §2333338
DIGITAL INPUTS ANALOG INPUTS
Ao
@
§§ o | VFD #1
-:zcs A0 I
S UG -AD2- CONTROLIN
VFD#2
O N O"Mm RELAY OUTPUTS
uss 1 P(Z: I HE CONTROLIN
=] I_—_—l RS232 = - =
FEgEEEEEEEE

Figure 31 Analog Output Connections

49

Hardware

TYPICAL RUG3 REMOTE
RADIO TELEMETRY STATION

- ! Flow
Run1 - +

4 Transducer 2 ,_

)) Tank Level
Run2 + —_—

| Transducer1 |

nnnnnn

REE) ERERERR PWR SUPPLY

RUG3 RTU

H=2+135 VDC
L=2| GND

- [Y
O (ovase | BELAY OUTPUTS 7] 115 VAC
RST ™ .

i

Red
Red

Black
Black

120 VAC

ANTENNA

[PUMP1 | [pumpP2 |

Pump. Starfers

Straight: PN RICBLAUD
Right angle; PN RICBLAUDRA Rxple @ onD
XD ® @
‘ KEY ® ® [PWR
.o
o REWHITEHEY —
TRRED-TH ~ | _. []

DB9Male

Figure 32 Typical RUG3 Remote Radio Application

Hardware

51

Using RUG3 Support Software

CHAPTER 4...USING RUG3 SUPPORT SOFTWARE

Introduction

Unlike earlier RUGID products that you program using the procedural BASIC language, in the
case of the RUG3, you configure and interconnect preprogrammed modules using the R3SETUP program
that runs under Windows. Preprogrammed modules are nothing more than software function blocks that
perform specific functions based on inputs that you specify. After you complete your configuration, you
save it and then press the ‘Send To R3’ button to send it to your RUG3 unit. The code for each module is
sent to the RUG3 when you send the program , so as soon as the configuration is successfully loaded into
the RUG3, it will begin executing modules as established by your configuration file. Modules will execute
in alphabetical order, but since the program cycles about a 100 times per second, for all practical purposes,
you can assume that all modules are executed simultaneously. Once execution starts, it can only be stopped
by hitting the recessed ‘Reset’ key on the front of the RUG3’s board next to the modular programming
port, or by sending a new program to the RUG3.

Procedure for Setting Up a Project

You can enter modules in any order you want, but we find it most convenient to follow the
procedure below:

1) Configure I/0 modules

2) Install setpoint modules

3) Set up receive telemetry arrays

4) Configure math calculations

5) Design control strategies

6) Configure statistics (totalizations, data logging, running times, minima, maxima, etc.)
7) Setup transmit telemetry arrays

8) Design displays and reports

This will generally assure that inputs to modules are established before they are needed. However, there

will be instances where all inputs will not have been established before a module is defined. In that case,
simply save the module without the input specified, and return to it later to finish it.

53

Using RUG3 Support Software

Starting R3SETUP Design Environment

To configure the RUG3, you must use the R3SETUP program included with your unit on request
and available at no charge from RUGID’s web site, www.rugidcomputer.com. Refer to the tutorial section,
chapter 2, if you have not yet installed this software. Once installed, to start the software, either click on
the R3 icon on your desktop; or click on the START button at the lower left of your Windows screen;
select PROGRAMS; then select R3ISETUP from the list of programs installed on your computer. The
program should start and display the screen presented in the next figure. Note that when the program first
launches it presents a panel labeled ‘Setup I/O Channels’, presuming that you will wish to specify /O
channels before anything else.

Wl - [Jors "o omra [EEN
Open Proj Save Az Setup 110 Send Pgm Terminal Watch Resssign Document
Setup |/0 Channels ﬁ3 DATABAGES
A Close :
0 Click on unaszigned 1/0 paint [brack eted] to define for spstem. M T l R l Stings]
|— 0r, click on any previously aszigned [not bracketed) 1/0 point to edit. Floating Pt] Integer Status
C
|' Analog Inputs Digital [nputs Digital Outputs Analog Outputs System.BootTrg
System Logon
Spstem SechTrg
* | System.SecTrg
[Chan &]
[Chan 7]
[Chan B] [Chat B]
[Chan 5] [Chan 5]
[Chan 4] [Chan 4] [Chan 4]
[Chan 3] [Chat 3] [Chan 3]
[Chan 2] [Chan 2] [Chan 2] [Chat 2]
[Chan 1] [Chan 1] [Chan 1] [Chan1]
COM COr
Ram= 0/1024 Pam Flash= 28928,!'23925 Logger Flash= 0/S24288

Figure 33 R3SETUP Opening Panel

Tool Bar

= O} -3 Wl » & [~ oo s [

Open Proj Save A3 Save Setup WO Send Pgm Terminal Wiatch Reassign Document

The tool bar at the top of the screen gives you access to major compiler functions. Any that are
inappropriate or unnecessary will be faded out and inoperative. Tool bar functions are listed below:

Open Project: Provides a list of the last 10 projects you accessed for quick selection. Also includes “New”
to start a new project; and “Open” to open a dialog box giving you access to all projects.

SaveAs: Saves the current project with a new name/location.

54

Using RUG3 Support Software

Save: Saves the current project with existing name and location.

Setup 1/0: Presents the I/O representation so you can access individual I/O points.

Compile: Causes the compiler to process your configuration, looking for errors.

SendPgm: Compiles your file, opens the terminal panel, and sends your file to an attached RUG3.

Terminal: Opens the terminal panel from which you can communicate with the RUG3, send a file, reload
the RUG3 operating system, set the RUG3’s realtime clock, etc.

Watch: Opens the watch window which you can use to observe database items as the RUG3 is running its
program.

List Errors: Shows the results of the latest compilation.

Reassign: Clears RAM assignments made to modules, arrays, etc. so the compiler can reassign RAM. The
compiler tries to avoid reassigning RAM used by modules so that setpoint values, totalizations, etc. are not
corrupted when you change your configuration file. If the compiler cannot find enough RAM or if a RAM
overlap is detected, it will prompt you to click the Reassign button.

Document: Causes the compiler to generate a descriptive ASCII text file of your project with the same
name as your project except with a . Txt extension. It is stored in the Projct folder.

Loading an Existing Project

If you wish to load an existing project, click on the Open Proj button at the left end of the tool
bar. That will open a file dialog box from which you can navigate to the folder you wish and select a file.
If you click on the narrow vertical bar portion at the right of that button that has a small down arrow on it,
the system will present you with a menu of the last 10 projects you worked on along with Open and New
options. The Open item will open the file dialog; the New item will delete any project presently installed
and prepare for designing a new project.

Saving a Project

To save your project, you can click the Save button to save with the same name and folder from
which the file was originally read. If you have not already named the project, then click the Save As button
to save the project with a new name.

Configuring I/O Modules

After you have decided on your I/O points, you should identify each I/O point that you intend to
use and name it. You start that process by selecting an I/O point from the I/O panel. If the panel labeled
‘Setup I/O Channels’ is not visible in the center of your screen, click on the ‘Setup 1/0O’ button on the
toolbar. To illustrate by example, as presented in the following figure we have selected the first digital
input. The RUGS3 has several ways in which to use digital inputs, so the panel presents us with those
choices in a small sub-panel seen near the middle of the screen. (For digital inputs, the choices are: Digital
Input DC, Shaft Encoder Input, Digital Input Counter, and Pulse Duration Input.)

55

Using RUG3 Support Software

| Filr l|Setup
—~y
> DE Tl f{-r3 [Jora o0 omran [)55
Open Proj Save As Setup 110 Send Pgm Terminal Wistch Reagzsiogn Document
Setup /0 Channels R DATABASES
& Cloze : .
C Click on unassigned | /0 point [bracketed] to define for spstem, M TH] R | Strings]
|— Or, click on any previously azsigned [not bracketed) 140 point to edit. Floating Pt] Integer Status
C
|_ Analog lnputs Digital Inputs Digital O utputs Analog Outputs System.BootTrg
System. Logon
Choose Digital lnput Type ; gPSlengC?ng
¢ Digital Input DC felemaachy
" Shaft Encoder Input
" Digital Input Counter
" Pulze Duration Input
[Chan 8]
[Chan 7]
[Chan E] [Chan E]
[Chan 5] [Chan B]
[Chan 4] [Chan 4] [Chan 4]
[Chan 3] [Chan 3] [Chan 3]
[Chan 2] Chan 2 [Chan 2] [Chan 2]
[Chan 1] lhm]w [Chan 1] [Chan 1]
COM COM
|Ram= 0y1024 Pgm Flash= 25926/26928 Logger Flash= 0/524285

Figure 34 Selecting 1/0 Type

Once you select a type of digital input, you will be presented with the module configuration screen, where
you will name the module and set some or all of its input properties. The configuration screen for the DC
type digital input is presented below.

Module Type: DigitallnputD C

Module name, this instance: |F'um|:uFaiI —D Save | X Cancel |
Togale DescrdM u:utes|
Dezcription:

Reads digital input and presents itz state as DI output such that a clozed contact or ground on the digital
ifput pin will result inoa 1" on the output, kModule alzo provides inverted output, DIB ar, such that a closed
contact or ground on the digital input pin will result in a '0" on the DIEar output.

Inputs and constants: Outputs to Data Bases:
[kern: W al Azsigned: [kern:
[nout Channelf kot PurnpF ail.01
Dutout inverted PurnpF ail. B ar

Figure 35 Digital Input Configuration Panel

Your cursor will rest in the module name edit box where you will type in your name for this module. As
you do, you will notice that each of the module’s outputs, on the right side of the panel, is given the name
you type in followed by an extension that is different for each output, and suggests the output’s function.
The digital input module above, which has already been named PumpFail, has two outputs. The *.DI
output basically follows the state of the external digital input. The *.DIBar output is the inverse of the

56

Using RUG3 Support Software

actual digital input. For the digital input module presented above, the input channel number has already
been filled in by the system, so you can click the Save button to save this module to the project. If you
click Cancel instead, the module will be abandoned. Most modules have several input properties that you
can fill in or leave blank if they are not needed. Once you save the module to the project, its outputs are
saved to one or more of the databases using the name you gave the module followed by the individual
output extensions. Once a module’s output is installed in a database, it constitutes a signal that can be used
as the input to any module, including the module that generates it. After you save this module, you can
select another I/O point to configure until you have configured all you intend to use. If you wish to record
your own notes regarding the function of a module in your project you can do so by first clicking the
‘Toggle Descr/Notes’ button to bring up the user notes panel in place of our description. You can then type
in your own text which will be saved with the module within your project. As you save each module, its
point on the I/O representation will be displayed with the name you gave the module. In some cases,
particularly in the case of relay outputs, you will probably configure them before you have established the
signals that will actually drive them, since they will probably be driven by the outputs of some control
strategy. In those cases, simply configure the modules to the extent you can and leave blank any input
properties that are not yet established in a database. You can return to them later. When you are done
configuring I/O points on the cards, click the Close button to close the I/O panel. You can return to it at
any time by clicking on the card cage button on the upper tool bar.

Data Bases

The compiler maintains six databases as illustrated below. They reside on the right side of the
main project screen. The databases contain the project’s signals, which are generated by modules, by
ladder logic, or as the result of a reception on a telemetry channel. Basically, the databases constitute the
repository of the outputs of the project. You can make visible any one database by clicking on its tab at the
top. In the figure below, the integer database is visible and contains a number of signals, which are
alphabetized for easy reference. When you are configuring a module, display, etc., and it needs a signal
from a database, simply drag the signal from the database and drop it in the module’s input cell. Note that
you cannot drag items from the TX database since those entries are actually outputs of other modules...use
the outputs of the same name where it resides in another database.

57

Using RUG3 Support Software

R9 DATABASES
T | Ax | Stings |
Flaating Pt Integer | Stahus

AlarmReport.Seq -
AnalogReport. Seq
DailyFeport.Seq
Dialtnz. Digit
Dialnz Prog
Dialtnz Seq
DialDelay. TBL
Dial5equen.OpMum
DialSequen.Rety
DialSequen. RptSel
DialSequen.SglSel
DialSequen.State
DialSequen. Subl
DialSequen. Trmr
GethdzgMumber.Sq
PageFlag. TEL
RTC.Day
RTC.Drayaf
RTC.Hr I
RTC. Min

RTC ko

RTC.S5ec

RTC.T =

Figure 36 Databases Showing Integer Database
Adding a Module to a Project

You can add a module to a project by clicking on one of the tabs in the ‘R3 Module Library’, to
pull down the module list for that category. You would then click on one of the modules in the list to begin
the process of including it in your project. The figure below presents the I/O category module list.

58

Using RUG3 Support Software

[y D —E

- [ox]

-2 [[J=r2 oo

GEM
D=ram [)55

Open Proj Save As Save Setup /O Compile Send Pam Terminal Wigtch Resssign Documernt
e ' Made... -] S : = A
Read/Edit Notes e T ; R3 MODULE LIERARY : R3 DATABASES
- * Design

05 at last save: £ Debug Display] Carnmur.] BASIC] Ladder] Tables] TH] R] Strings]
,1097 " Engineer 1#0 + System Math | Cortrol | Statistics | Floating Pt l Integer | Status |
D ate of last save:
’—_ r Analoglhput Syztem.B atty’
3/4/2003 5:12.05 PM DiginCount System. TempF

E DigitaltylarmOutput TankLwl.Out

: DigitallnputDC
DrigitalCutput

PulzeDurationln
PulzeDurationOut
PulgeToFlow
Setpaint

SpzSetup

‘winteF actomT est
‘wiitehw'dT olnfoFlash

\Pgm Flash= 32512/32512 Logger Flash= 0,1'524288 Meed to save... Need to compile...

Ram= 0/1024

Figure 37 Selecting Module From Module Library

Clicking on a module in the list will bring up the module configuration panel specific for the module you
have selected (in this case, the setpoint module) as shown below:

Module Type: Setpoint

—DSave | x Cancel |

Module name. thiz instance: ||
Togale DescrdM -:utes|
Dezcription;

Setpoint module holdz a user entered setpoint. Prompk string is a descriptive sting up to 16 characters for
wzer prompting. Example: 'Tank high alarm, fi='

T he tigger input farces installation of the default value.

[F output greater than max allowed walue, then output will be zet to max allowed valle,
IF output lezz than min allowed value, then output will be set to min allowed value. W

|nputz and congtants:

CDutputs to Data Baszes:

Default value

b an alloveed value
i allowed value
Wizibiliw 10.1.21

Figure 38 Setpoint Module Configuration Panel

59

[term: Wal Azsigned: [term:
Promot tring Walue uger entered: SF
Triooer inztall default P ew value tigoer MewTrg

Using RUG3 Support Software

Naming a Module

Once you have a module’s editing page present as in the case above, it is important to enter a
name for the module. The name must be less than 20 characters long and must be unique, or when you
attempt to save the module, the R3ISETUP system will complain that the name already exists. You should
choose a name that suggests to you the function or signal being processed by the module, since that name
will be the name given to all outputs of the module which then appear in the data bases for use by other
modules. Also, the name is your reference for accessing the module later to make changes. For example,
for analog inputs, you might choose names such as ‘TankLvl’, ‘StreamFlow’, ‘Pump1Temp’, etc. For relay
outputs, such names as ‘Pmp1CallRly’, ‘HiAlrmRly’, or ‘SandRly’ suggest their functions. Also, names
may contain blank characters and numerals for clarity.

Connecting Modules Together

You connect one module to another by connecting the output of the first module to an input of the
second. Since all module outputs are placed in the data bases, visible to the right of the page above, the
process of connecting an output to a module’s input amounts to finding the signal you want in one of the
databases, and then dragging it over to the module you are working on, and dropping it into one of the input
cells. For example, in the screen shown below, the signal ‘BattRawCalToFlash.Val’ is established as the
input to the pictured module by dragging it from the integer database to the right and dropping it into the
Input A property of the ValueTest module shown:

= - - [B]x]
= - GEN
. D Bl > g=[]= o pmray [
Open Proj Save As Setup WD Compile Send Pgm Terminsl ‘Wigtch B, Reasszign Document
Module Tepe: WalueTest o et
Module name, this instance: |EaITest —$] Save | XK Cancel | Stk e o :
Togale Descr/Naotes T l R | Strings]
Description: Floating Pt Integer | Status
“when enabled, compares the input with the dezsignated setpoint. [nput and setpoint can be integers or
floating point values or varables, Updates outputs whenever enable is either true or unspecified, Aovgh Fraw, Crit A
Aovgtsl 2R aw. Cht
Arvegdl 3R aw. Cnt
AvghldR awm Cnt
Inputs and constants: Outputs to Data Bases: i:g:: gg:x E:E
L= [l Assioned: Item; AaygBattyH aw. Crt
Ensble 1 AR CalTest GT AvegTapCmdRaw. Crt
Input & LB CalTestGE AvalempHagisht
Inout B 2= CalTest.EQ
AR CalTest.NE BaatCount Cht
A<=B CalTest.LE CalaKStr Sum
£<B CalTest.LT EraseCalVal
FiweSec.Cnt
b odem300F ate. Trr
ModemT 03800, Dy
MaodemTrigComS etT a300B aud.Dly
Row.Dest
Row.Src
RTC.Day
RTC.Dayofwik
RTC.Hr w
Ram= 0/1024 Pgm Flash= 3251232512 Logger Flash= 0/524238 Meed to compile, ..

Figure 39 Dragging a Database Item Into a Cell

60

Using RUG3 Support Software

In general, the compiler will take care of converting the data base signal type (floating point, integer, status,
etc.) to the type expected by the module into which it is dragged. However, four limitations exist:

-Inputs that specify channel number must be integer constants (you type them in).

-Inputs that call for the number of bytes in an output string must be integer constants (you type them in).
-Inputs that expect numbers or statuses must not be given entries from the string database. Inputs that
expect strings will say so in their input prompts.

-Inputs that expect strings must not be given inputs dragged from any database other than the string
database.

Module Inputs

Almost all module inputs can accept either outputs from other modules or constants. Channel
numbers for I/O type modules must be constants. These must be typed in or the compiler will complain.
You should not leave inputs blank. If you fail to make an entry for a module input, the RUG3 will
probably assume it is zero unless it is a status input that should default to a one for logic reasons. However,
in some cases it can assume values that will be incorrect for your application. Therefore, you are
encouraged to fill in all inputs with constants or values from the databases. You can drag any type of
output to the inputs of modules that don’t need constants, even if it doesn’t make sense. The RUG3 will
simply convert the input to the type needed and proceed with processing. The exception is that you cannot
drag a string into an input that needs a numeric value; nor can you drag a numeric value into an input that
expects a string. Most of the expected input types will be obvious from the prompt. If you are uncertain,
consult the detailed module descriptions in chapter 5.

Triggers

Some modules generate triggers. A trigger is simply a status that is true for exactly one program
scan. For example, the TriggerEveryXMinute module generates a trigger event each minute. The trigger
output status from the module becomes true at the beginning of the full scan following the scan in which
the conditions were such that the module generated the trigger. The status will remain true for the entire
scan and then be returned to false at the end of the scan. Any module that uses that trigger will see it
during that scan. You use triggers where one time actions are required. For example, displays require a
trigger to cause the display to refresh. If you were to use a status generated by seconds=0, then once a
minute the display will update several times during the zeroth second. If, instead, you use
TriggerEveryXMinute, then the display will refresh exactly once per minute.

Listing Modules in the Project

In the center of the main project screen is a set of tabs labeled “Modules in This R3 Project”.
Clicking on one of these tabs will show you all the modules of the type in the tab title that you presently
have installed in your project. For example, the figure below presents the list of all I/O and system
modules in the project when you click the “I/O + Sys” tab. Notice that each module is shown with the
name you assigned the module followed by the module type.

61

Using RUG3 Support Software

bodules in thiz B3 Project

[/0 + Syz l b ath] E-:untru:ul] Stats] Cormnm]
. HiglrmS ... Setpaint
el I i, DigitalDutput
[] Lawasirn. ... Digitald utput
ol LowdlrmSp... Setpoint
ke e System.. SuzSetup
E‘ TankLyl...Analoglnput
Delete
iy
Search

Figure 40 List of I/O and System Modules Installed in Project

Modifying an Existing Module

If you wish to change a module after you have installed it in the project, you simply select it from
one of the lists in the “Modules in This R3 Project” tabs, and click on the Details button. The module’s
configuration panel will be presented wherein you can make your changes and then save to the project.

Copying (Cloning) a Module

If you need a module of the same type and with similar inputs to one you have already designed, it
sometimes saves time to clone an existing one. You do this by selecting the module you wish to clone from
the “Modules in This R3 Project” tab and then click on the Clone button. You will have to give the module
a new name and then change any input properties you wish. Then click on Save to install the new module.

Deleting a Module from the Project

To delete a module from a project, select it from the “Modules in this R3 Project” tab and then
click on the Delete button. It will be deleted from the project and all its outputs will be deleted from the
databases.

Searching for Where a Module’s Outputs are Used

Sometimes it is useful to know where a module’s outputs are used before altering or deleting the
module. The ‘Search’ button will bring up the Variable Search panel. To search for all uses of a database
item, simply click on the item. The search table will then list all locations where the module output is
used, as illustrated below:

62

Using RUG3 Support Software

‘Wariable Search

Finds all occurences in project where selected variable iz uzed.

Click on variable in database to start zearch.

X Cancel

Yariable to search for.. | oetup-SecTrg

“w'here vaniable iz uzed in project...

Digplay Dialdnewer...Display trigger
Dizplay Event Logger...Display trigger
Dizplay Main...Display trigger

Digplay Setpoints...Dizplay tigger
RTC...ReadRTC... Trgger input

Speech Report AlarmB eport... S can tigger

Figure 41 Searching for Output Usage

Returning to the Setup I/O Panel

To return to the 1/O representation of your project, click on the Setup 1/0 button on the tool bar.

63

R9 DATABASES
T | Rz Stiings
Flaating Pt] Integer Status

peak.
Speak.Play
Speak. Acd
SpeakDone ORbar
SpeakDone DR out
SpMenus. ChgTrg
SpMenus. DunTrg
Sphenus, Hawblm
SpReportSelect. 51
SpReportSelect.510
SpReportSelect.52
SpReportSelect 53
SpReportSelect.54
SpReportSelect.55
SpReportSelect. 56
SpReportSelact 57
SpReportSelect.58

RepotSelect. 58 ~
ReportSelect. 59
Setup BootTrg

L

SpReportSelect. 59 w

1

Using RUG3 Support Software

Configuring RUG3 Displays

Adding a display to the system will make an operator’s job a lot easier than if the unit has no
display since we can show him internal values and how setpoints are set. To add a display, first click on
the Display tab in the R3 MODULE LIBRARY window. Your screen will change to this:

7’ ¥153 C:\R3DelphiFiles\R3ProjetiTankTest.rad - [=]x]
lll » g [= "o 1] o=nw [
Open Proj Save As Setup WD Compile Send Pgm Terminsl Watch ListErors Reassign Documert
R : Made... 7 ; Eagel oy dsremies
ead/Edit Motes ! ! e | i s 3 MODULE | YR R e ! . 'SDQTABQSES-
T e s it S=Uni i oy i :
0S atlastsave: | (" Debug o /0 +System I ath ! Cantral ! Statistics T I R Strings lr
1140 B i Enaineer J: . Digplay I Commur. I BASIC I Ladder I Tables |- Floating Pt I Integer Status |
Da_te_ of I‘_a’s_l save: : ; " ; __._
[11.18/2002 T:18:07 P L plore i plleat ¢ gystem.EootTrg
e 1 D Mew Display Part 0... I~ YElern. Logon
! g S i — 7 | Main display) gystem.gec?rg
] i O o |Swstem.SecTig
LA ey | TankHiLadlams Hislm
E‘ Delete Dsp - | TarkHiLodlarms. Ladhm

e

inm Flash= 28928/28928 \Logger Flash= 0/5242858

|_Need ta compile. .. A4

|iR_e.m= 01024

Figure 42 The Display Tab

From here you can click on the ‘New Display’ button to create a new display; or, you can select an existing
display and then click on either ‘Edit Display’ to edit the selected display, or you can click on ‘Delete Dsp’
to delete the display from the project. If you elect create a new display or edit an existing one, you will be
presented with the following display editing panel (an existing display is shown):

64

Using RUG3 Support Software

Digplay/Aeport Editor

Diigplay title for menus'Main display DSP Port; 0 :|¢ —D Save
Dizplay text...use @0E.(2 where variable data should appear. pepg |0 2 % Cancel
Tanl ft=@@ @ Ilpdate trigger:

Hi=@@.@ Lo-@i2.@ |System.SecTrg

Hi alarm OH=@

Lo alarm OH=@

Wariables on zelected line:

HialrmSP.SP
LowdlrmSp. 5P

=L 0 00 =] O LT e L

Figure 43 Configuring Display for LCD

On this panel, you must enter the display’s name, port number and display number. Enter the
display’s name in the cell called ‘Display title for menus’. This is used in menus to enable you to select a
particular display to edit or delete; and for the operator to select a display when the unit is running. The
port number identifies the port where this display will be observed. The following ports are valid for the
RUG3:

Port 0: local LCD display

Port 1: unit programming RS232 port labeled P1

Port 2: unit modem/RS232 port, labeled P2 if RS232 or MDM-AUDIO if modem

The display number specifies where in the display list this display will be shown. Display number 0 will be
at the top of any list, display number 1 next on the list, etc. Each display must have a unique number and
there must be no gaps or duplicates in the display numbering or the compiler will complain. Note that each
port will have its own display list. In most applications, you will design displays for the LCD port and
none for the serial ports. However, you can design displays for serial ports that are designated in their
ComSetup modules as ASCII mode. In that case, the operator can select displays to be presented on any of
the ports independently. Displays presented on any port will not affect displays presented on other ports.
The cell labeled ‘Update Trigger’ contains the trigger signal that governs when the display will be updated.
Usually you will use the ‘SysSetup.SecTrg’ trigger from the status database to update the LCD once per
second. For serial ports, you should use ‘SysSetup.Sec5Trg’ to update once each 5 seconds, since once per
second updates for serial ports is usually too frequent.

The large window on the display panel is where you type in the text you want the display to show
when accessed by the operator. Basically, what you type there is what the operator will see, except that
you use ‘@@.@’ symbol fields to designate where active data from the databases will be shown. To
specify the particular database item to be shown on a line simply click on the line and then drag the item
from a database that you wish to show on that line into the list labeled ‘Variables on Selected Line:’. To
illustrate, we’ll design a display for the LCD below.

65

Using RUG3 Support Software

Designing a Display for the LCD

The RUG3’s LCD display is limited to 2 lines by 16 characters. Also, it is designated as port 0 in
the display addressing structure. Therefore, when you configure an LCD display, you must specify port 0,
and keep your lines to 16 characters or fewer. You can place up to 100 lines on any display, but the RUG3
will only show two at a time. The operator accesses additional lines on the display by hitting the UP or
DOWN arrow keys to traverse up or down the display by two lines per key press. You can have multiple
displays designated for the LCD. The operator traverses to the next display by hitting the ‘Enter’ key. You
will find it most convenient to design your display with related items on lines that will be displayed
together. Notice in the display configuration page above, no line exceeds 16 characters, and the display
port has been set to 0.

Notice the use of @@.@ symbols. Basically, anywhere you want active data from a data base to
appear on the LCD, you specify the location and format by using the @@.@ characters. ‘@’ symbols and
decimal points are regarded as one field with the location of the decimal point specifying where the decimal
point will be placed on the LCD screen. For each @@.@ field on a display line you must have a variable
installed in the panel labeled ‘Variables on Selected Line’. When the RUG3 program is running and the
RUGS3 is updating the display, if it encounters a ‘@@.@’ field it will consult the ‘Variables on Selected
Line’ list to tell it from where to obtain the data to be presented. The first ‘@@.@’ field will be filled in
with the value from the first item in the list; the second ‘@@.@’ field will be filled in from the second item
in the list and so on. In the example display above, the user’s cursor is resting on the second line which
contains two ‘@@.@’ fields. For that line there are therefore two database items in the variable list.

Compiling the Project

At any time you can click the green Compile button to compile the project. The compiler will
compile your project and give you a list of errors if any are found. The compiler will compile
automatically whenever you command the compiler to send the project to the RUG3, and if you click on
the watch window button. After a successful compilation the compiler will present the RAM and Flash
memory required within the RUG3 in a small panel in the lower left corner of the R3SETUP form as
illustrated below.

Ram= 310/1024 Pgm Flash= 4636/23928 Logger Flash= 20224/524288

Figure 44 Project Ram and Flash Utilization

In each of these fields the leftmost number is the amount required by the project; the rightmost number is
the unit’s total capacity available for project use. RAM is the scratchpad area used by the modules as they
execute. Pgm flash is the area where the configuration file is stored and is not changed as the program is
running. Logger flash is used for data logging.

Sending the Program to the RUG3

After you have designed your project and it compiles successfully, you are ready to send it to the
RUGS3 for execution. You can do this either by clicking the Send Pgm button on the tool bar, or by
clicking the Send Pgm button at the top of the terminal page. In either case, the compiler will compile the
project and then open the terminal page and begin sending the program. If the compiler detects any errors,
it will not send the program. Assuming no errors are found, the program is sent using the RUG3 CRC
secured protocol to eliminate any transmission errors. If any transmission errors are detected, the repeat
counter will be incremented and displayed. Once the program is successfully sent to the RUG3, the
compiler will command the RUG3 to begin immediately running the program.

66

Using RUG3 Support Software

Opening the Terminal Page

The terminal page is a communications window that lets you send ASCII messages to the RUG3
and lets you observe ASCII responses from the RUG3. To open the terminal page, click the Terminal
button on the tool bar. When you do so, R3SETUP will open a communications port on your PC and begin
communicating with the RUG3. The page looks like the figure below:

Terminal;

REI REI IEDZ’REI %mﬁgéﬁe: x Cancel

end Porl endne| SemdBIC o

Version 153
FProgram: E3Burnind®. rgd 472004 7:48:37 AN

Di=zplaw= Menn

Setpoints Menu

Set clock-calendar
Tables Menu

Adj LCD contrast. now=130
Raw I-0 data

L= R Y S

Choo=ze option. . .
*#xx%x SYSTEH HEHT %

Version 153
Program: E3BurnindQ. rgd 472004 7:48:37 AM

Dizplays HMenu

Setpointsz Menn

Set clock scalendar
Table=s Henu

Adj LCD contrast, now=130
Raw I..0 data

(= u g Y SO o

Choo=e option. . .

Figure 45 Terminal Page Showing Normal RUG3 Boot Up Messages

Sending the Operating System to the RUG3

Since the RUG3’s operating system (OS) is held in flash memory, it can be reloaded serially.
Each revision of R3SETUP includes the latest RUG3 operating system. Clicking the Send OS button on
the Terminal page will send the new OS to the RUG3. Loading the OS to the RUG3 will take several
minutes. If it is interrupted, or if at any time the operating system integrity test on boot up fails, the RUG3
will issue a “Waiting for OS load” message and wait until you reload the OS. You should make sure that
the operating system version present in the RUG3 matches the version of your R3SETUP. The RUG3’s
operating system revision is listed on the terminal page any time the RUG3 issues the “Welcome to RUGID
Monitor” message. On the terminal page illustrated above, the OS version is given as 153. R3SETUP’s
revision is given in the upper left hand corner of the form as V153 for example.

67

Using RUG3 Support Software

Sending the PC’s Realtime Clock to the RUG3

At any time, you can click the Send RTC button at the top of the terminal page, and R3SETUP
will read your PC’s clock/calendar and install it into the RUG3’s realtime clock in CRC secured format.
To return to ASCII mode, you will need to hit the CTRL K key 4 times afterward.

Stopping the RUG3’s Program

You can stop the RUG3’s program by typing Ctrl K three times. The RUG3 should send the
‘Program halted!” message and wait for a command or program reload. After 60 seconds of no activity, the
RUG3 will test the loaded program and restart it if no errors are detected.

Observing Program Execution

You can observe the values of data base items while the RUG3’s program is running by hitting the
Watch button on the tool bar. When you do so, the following watch window panel will appear:

hatch Window

Dirag wariable to be watched into a cell in one of the YARIABLE columns. x Cancel
Yariable's walue in the BUG3 will be continuausly updated in WALUE cell ta right. —_—
Toggle poke mode O A0FF by double clicking cel; cell will turn vellow when poke mode B Clk Table

iz active. In poke mode, walue you enter in cell iz poked into BUG3 data baze and held —_—
until poke maode iz turned off or RUGS rebooted. For statuses in poke mode, zimply E‘ Clr % alues
click value cell to toggle status state.

YWaHIARLE Mol LE |

Resendto BT

Figure 46 Watch Window

When you first see this window, all entries will be blank as shown above. To begin observing values from
the RUGS3, simply drag database items from your databases and drop them into the VARIABLE columns
on the watch window. Within a few seconds the watch window should begin showing values present in the
RUGS3. If your RUGS3 reboots for any reason or you reload its program, it will stop sending watch window
updates until you re-drag the database items back into the watch window or until you click the ‘Resend to
RTU’ button on the watch window panel to refresh the list in the RUG3.

Documenting Your Project

If you click the Document button on the tool bar, the compiler will present the following selection
panel from which you can choose which portions of the automatic documentation generator you wish to
engage to generate project documentation automatically.

68

Using RUG3 Support Software

Documentation Choices

—B Generate| X Cancel |

Documentation File Mame:
|E:'\FI A0 elphiFilezhR 3P ojcthT a

Sechonz to be included in file:

[v Operating instructions

10 Setup

<l =l

Module Setup

<]

Dizplays
TLM Arraps

<l =l

Ladder Logic Setup

<]

Table Setup

<]

Speech Setup

Database Lists

1 7

Database Cross Reference

Figure 47 Documentation Generator Choices

When you click the Generate button on this panel, the compiler will generate a text file detailing those
items of your project that you selected. The file will be saved with the same name as your project except
with the .Txt extension unless you elect to name the file otherwise in the edit box at the top of the panel.

Setting PC Communications Port Parameters

The menu just above the tool bar has a Setup menu item from which you can select Com Port to
obtain the following panel.

Communications Setup

Parity: Baud R ate: 3 |
* Mone

" 300
i” Odd <
" Ewven £ 1200 Port: |1 -
" Mark ' 2400
“Word Length: 4200
{5
f+ 9500
i~ B
7 " 19,200
f« A " 38,400

Figure 48 Com Port Setup Panel

69

Using RUG3 Support Software

The selections shown above are the defaults and are the settings we recommend. However, you can change
them to suit your application. Changes you make will be saved in an initialization file and reinstalled each
time R3SETUP is started. Note that if you wish to use the USB port, you will probably need to select a
higher number com port such as port 4 or 5 depending upon how many USB connections are being
redirected as com ports on your PC. Port range is 1 through 25.

Setting File Paths and Controlling Sorting

If you select Preferences from the Setup menu, you will be presented with the following panel.

Preferences

Save | Cancel |

Dhirectary for SYSTEM files:
|E:'xF'rcugram Filez"Rug3“R35yztem',

Diirectary for PROJECTfiles:
|E:'xF'rcugram Filez"Rug3“ R 3P ot

Drirectary for BASIC files:
|E:'xF'rcugram Filez"Rug3“R3E azich

Seconds before com fail/conm retry 1 :|¢
[v Alphabetize Modules Before Campile

[v Flag Duplicate D atabaze Mames

Figure 49 Preferences Panel

Here you can change the paths to folders where R3ISETUP stores your files. Simply type in the new paths
you want and click the save button. You can also control whether the compiler sorts modules
alphabetically before compiling. Other selections are the following:

e Seconds before com fail/com retry...Sets the time in seconds that the software will wait for a
response from the RUG3 before declaring that the specific message has been missed and needs to
be retried.

e Alphabetize modules before compile...If you leave alphabetization checked (the default), the
compiler will sort before compiling, meaning that program execution in the RUG3 will be in
alphabetical order of the names you have assigned the modules. Also, setpoints will be shown in
alphabetical order. If you uncheck the alphabetization checkbox, modules will be executed in the
RUGS3 in the order that you installed them in your project; and setpoints will be presented in that
order also. Generally, leave this checked (the default).

e Flag duplicate database names...If you uncheck the ‘Flag Duplicate Database Names’ checkbox,
the compiler will ignore duplicate database names. If checked, duplicate database names and
therefore, module names, will cause a compile error. Generally, leave this checked (the defaul

70

Software Modules

CHAPTER 5...SOFTWARE MODULES

Introduction

This chapter provides detailed descriptions of the preprogrammed software modules resident in the
RUG3. With very few exceptions, you may use as many copies of each module as you need for your
application; you must simply give each instance of a module’s use a unique name. In addition to the
individual modules, this section discusses the use of ladder logic.

Typical Module Setup

The figure below presents a typical module already set up for an application. This is the module
editing panel that will appear any time you select a module from the module library. The inputs,
description, and outputs will vary from module to module, but they will all have the elements essential for
you to establish how the module is to behave in your application.

Naming a Module

Once you have a module’s editing page present as in the case below, it is important to enter a
name for the module. The name must be less than 20 characters and must be unique, or when you attempt
to save the module, the R3SETUP system will complain that the name already exists. You should choose a
name that suggests to you the function or signal being processed by the module, since that name will be the
name given to all outputs of the module which then appear in the data bases for use by other modules.
Also, the name is your reference for accessing the module later to make changes. For example, for analog
inputs, you might choose names such as ‘TankLvl’, ‘StreamFlow’, ‘Pump1Temp’, etc. For relay outputs,
such names as ‘Pmp1CallRly’, ‘HiAlrmRly’, or ‘SandRly’ suggest their functions. Also, names may
contain blank characters and numerals for clarity. In the example module below, the name has been
entered as “ComSet”.

71

Software Modules

Module Type: Eu:urriSetup

—DSave | x Cancel |

Module name. this instance: |ComsS et

Toggle Descr/Motez |
Dezcription:

Trigger ko ingtall etz all parameters and resynchronizes port. Ward length iz always 3 bits with 1 stop bit.

B aud: 50-56,000; Parity: O=none,2=0dd 3=even; Mode:1=A5C.2=R3, 4=kodbuz slave, B=bodbus slave
mode 2, F=A5Cuser, B=ALERT 9=T. ‘“When using modem, baud rate can only be 300 baud; tone use is
zet for low tones (A9 mode], or ALERT tones [ALERT mode]. Tedelay sets delay after keying transmitter
before data iz zent. Range iz 0-255 [or 0-25.5 gec.]. Tk amplitude sets transmitter amplitude. B ange is

Inputs and constants:

Outputs to Data Bases:

[kern: Wal Azsianed: [kern:

Port (1.2 2 Beceive in oroaress ComSet.Bx
Trioger ko ingtall setun ComSetinztal. OF out Transmit in Droaress ComSetTw
N=F5232 1=modem b odem300R ate. Fun

Baud 150-56.0001 b odemB audR ate. ASC

Prarity [0 .31 1

Address [1-255] 2

Mode (12467351 2

T delav. tenths of zec ModemTx=Delap.OUT

T amolitude [0-255] 205

Com buffer # butes 150

Figure 50 Module Editing Panel

Specifying Inputs

Most modules will have one or more inputs that you may specify. In the above panel, they appear

in a list on the left side titled “Inputs and constants”. You have three choices for each input: leave it blank,
type in a value or string, or drag in an entry from one of the databases. In the above example panel, the
first, fifth, sixth, seventh, ninth and tenth entries have had constants typed into them by the programmer,
and the rest have had entries from the databases dragged into them. Here are the rules regarding specifying

inputs:
[]

Constants: you may type in a constant in any input except in the cases of a few modules that
require arrays from other modules, such as modules that act on data stored by data loggers and
event loggers. You must type in a constant if the module description requires a constant. In the
above example, the first input (Port #) must be entered as a constant to tell the compiler which port
this module controls, and the last input (Com buffer # bytes) so the compiler can allocate RAM for
the buffer. Generally, constants are only required to tell the compiler which channel number a
module uses, or how much space to reserve for buffers and string outputs.

Blanks: you may leave blank any input that is not needed in a calculation or other use. Generally,
blank entries are regarded as 0.0 if they are terms, 1.0 if they are factors. It’s safest to install an
entry for all inputs.

Pointers: when you drag an entry from a database into an input, you are really installing into the
module a pointer to a place in the data base where the data resides. If a constant is not required as
described above, then you can always drag in a pointer from a database. The only limitation is
that if the module specifies a string input, then you must drag it in from the string database.
Otherwise, you can drag a pointer from any of the other databases. Conversely, if the module’s
input does not specify a string input, then you must drag a variable from one of the other
databases.

Data types: in the module descriptions below, each input description indicates the data type
expected (status, integer, floating point or string). Other than the case of strings described above,
you do not need to be concerned about the data type. The compiler takes care of numeric

72

Software Modules

conversions among the numeric types (status, integer or floating point). Therefore, even though
an input might indicate that it is expecting a floating point input, you are free to drag in, for
example, an integer.

I/0 Modules
Analoginput

The AnalogInput module is used to add either a current type or voltage type analog input to a
project. One of these modules is required for each analog input in your RTU that you wish to engage in
your project. The module performs raw count to engineering units (EU) conversion, low pass filtering, and
output range limiting. The EU at 4 ma or 0 volts entry sets the engineering units value that corresponds to
a 4 ma. input from the field (if designated as a 4-20 ma type input), or the EU value that corresponds to 0.0
volts (if designated as 0-5 V type input). The EU at 20 ma or 5 v entry sets the engineering units value that
corresponds to the high end of the instrument’s span. The filter time constant sets the time in scans of the
low pass filter. The higher the filter time constant, the slower the analog input will be to respond to
changes in input value and the more stable it will be in a high noise environment. Values below 100
essentially provide no noise immunity. Typical useful filter constants range from 500 to 20,000. The
engineering units output from this module will be available in the floating point data base.

Inputs That Must be Constants:
e Input channel #...which analog input channel on the board this module uses (1-6)

Other Inputs:

e I=enable, O=hold...status input that controls whether this module executes or skips

e Type 0=4-20, 1=0-5V...status that engages the channel sense resistor and selects the corresponding
calibration set for the channel.

e EU at4 ma or 0 V...engineering units value of output when input is either 4 ma or 0.0 volts

e EU at 20 ma or 5.0 V...engineering units value of output when input is either 20 ma or 5.0 volts

o Filter constant...low pass filter time constant in scans. The larger this number, the slower the input
will be to respond to changes in its analog input signal. Zero or blank gives no filtering. For values in
excess of 32767, use a decimal point, i.e., 56000.0

e High output limit EU...maximum output value in engineering units

e Low output limit EU...minimum output value in engineering units

Primary Outputs:
e EU output...Name.Out...floating point engineering units representation of this analog input
e Raw A/D output...Name.Raw...integer output of A/D converter (0-4095)

Expected Applications:

Use this module for analog inputs. Use setpoints for EU at 4 ma and EU at 20 ma if the operator needs to
adjust calibration.

73

Software Modules

AnalogOutput

The AnalogOutput module is used to add a current type analog output to a project. One of these
modules is required for each analog output in your RTU. The module performs engineering units (EU) to
raw count conversion so that when you present an EU value to the module, the correct output current is
emitted by the hardware. The EU at 4 ma entry sets the engineering units value that corresponds to a 4 ma.
output. The EU at 20 ma entry sets the engineering units value that corresponds to a 20 ma. output. For
example, if you use the analog output to control a VFD (variable frequency drive) and you wish to use an
engineering units range of 0 to 100%, set EU at 4 ma to 0.0 and EU at 20 ma. To 100.0. When the enable
update is true, the module will send a new value to the output hardware. IMPORTANT: do not set the
‘enable update’ input to ‘1’ or the channel will attempt to send the analog output to the D/A converter every
program scan. This will cause the channel to draw more than 4 ma. from the channel and thereby corrupt
its linearity. Instead, use the System.SecTrg once per second trigger in the status database to cause the
output to be updated once per second. If select=0 or blank, the module scales the floating point value (EU
Source) by interpolation and extrapolation, and sends it to designated analog output port. This is how you
should set it. When select=1 (used during factory calibration), the module sends the raw count value
directly to analog output. Allowed values of raw count are 1 through 4095.

Inputs That Must be Constants:
e Channel # (1 or 2)...which analog input channel on the board this module uses (1-2)

Other Inputs:

e Enable update, O=hold...status input that controls whether this module executes or skips. Use
System.SecTrg here.

EU source...floating point value that is to be converted to 4-20 ma. current at the output.

EU at 4 ma...engineering units value that should produce 4 ma. output current

EU at 20 ma...engineering units value that should produce 20 ma. output current

Select, 0=EU, 1=raw...integer to specify that: Select=0, the module convert the EU value to output
current; or Select=1, that the module transfer the raw value directly to the D/A converter.

e Raw count to send...raw value to send directly to D/A converter when Select=1

Primary Outputs:
e None

Expected Applications:
Use this module to control analog outputs for controlling VFD’s, gates, valves, chart recorders, etc.. Use
setpoints for EU at 4 ma and EU at 20 ma if the operator needs to adjust calibration.

Anemometer

The Anemometer module is used to read the anemometer input (alternate use of analog input #6)
and compute wind speed from accumulated pulses. Result is: Windspeed=SpeedPerHz * PulsesPerSec +
Offset. A new output is calculated once each 5 seconds using average pulses per second. If result falls
below dropout, the result is set to 0.0. This module uses interrupts to count pulses at relatively fast rates.
Design has been tested at 1200 Hz.

Inputs That Must be Constants:
e None

74

Software Modules

Other Inputs:

e Speed per Hz...floating point value from instrument data that specifies the wind speed engineering
units that should result from 1 Hz input frequency

e Offset...floating point value that will be added to speed calculation to produce result (usually 0.0)

e Dropout...floating point value of the result below which the module will issue a result of 0.0

Primary Outputs:
e Windspeed...Name.Wind...floating point engineering units representation of wind speed

Expected Applications:
Use this module to read wind speed from anemometers with AC outputs.

DiginCount

This module is used to engage background pulse counting on a designated digital input. The input
is sampled 256 times per second, enabling the input to capture square waves of up to 128 Hz, or pulses as
narrow as 8 ms with a minimum separation of 8 ms. Counting range is —32768 through +32768. The
counter counts up on each assertion of the digital input and stops when the counter hits its maximum value.

Inputs That Must be Constants:
e Channel #...which input channel (1-8) on the board this module uses

Other Inputs:

e Mode (0-2)... O=rising edge, 1=falling edge, 2=both edges

e Trigger preset...trigger input that causes the preset count value input to become the present count
e Preset count value...integer count to install as the count value when preset triggered

Primary Outputs:
e Count output...Name.Count...integer count of pulses counted since last preset
e Present DI status...Name.DI...status of digital input being counted.

Outputs for Internal Use: None

Limitations:
Pulses or inter-pulse timing of less than 8 ms. will cause pulses to be missed.

Expected Applications:

Use this module alone for general purpose counting and totalizations, such as pump start counting. It’s also
useful for detecting momentary contact closures such as pushbuttons. This module is also required to
perform counting for the PulseToFlow module. In that application, simply have both the DiginCount
module and the PulseToFlow module reference the same digital input. This module works with all digital
nputs.

75

Software Modules

DigitalAlarmOutput

This module should be used when you want a relay output to function as an alarm output, such as
in most alarm annunciator panels. Its function is to flash its relay output every half second when its status
input (alarm) turns on. When acknowledged, the relay output will go solid on if the alarm is still present or
go off if the alarm has gone away. The module also has a lamp test input that will turn the relay output solid
on as long as the lamp test input is true. Once the lamp test returns false, the alarm output will return to its
state prior to the lamp test turning on.

Inputs That Must be Constants:
e Output relay #(1-4)...which output channel (1-4) on the board this module uses

Other Inputs:

e Status input...the status that constitutes the alarm this module is presenting.

e ACK input...trigger input used to acknowledge the alarm, i.e., make the output stop flashing on and
off

e Lamp test/ACK input...status input that when on, will cause the relay output of this module to stay on
until lamp test is turned off

Primary Outputs:
e Have unacked alarm...Name.UnAck...status output that will be true if an unacknowledged alarm is
present.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
This module implements standard alarm annunciation functionality. It works with all relay output modules.

DigitalinputDC

This module is used to bring DC type digital inputs into the system. One of these should be used
for each DC type digital input to be sensed. When the digital input is on, this module’s true output is 1;
when the input is off, the module’s true output is 0.

Inputs That Must be Constants:
e Input channel #...which input channel (1-8) on the board this module uses

Other Inputs: none

Primary Outputs:

e Output NO...Name.DI...true echo of external digital input state

e OQOutput NC...Name.DIBar...inverted echo of external digital input state
Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use this module to sense contact closures.

76

Software Modules

DigitalOutput

Use one of these modules for each digital output to be controlled in your application, except for
those used as alarm annunciators and needing the functionality of the alarm output module. This module
accepts a status from the status data base and uses it to control a digital output.

Inputs That Must be Constants:
e QOutput channel #(1-4)...which output channel (1-4) on the board this module uses

Other Inputs:
e Input status that controls...status whose state is to be echoed by the relay controlled by this
module

Primary Outputs: None
Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use one of these modules for each relay output to be controlled by a single status.

GetUserValue

This module enables you to set up a process whereby the operator can enter values directly from a
display using the local keyboard/LCD or serial port without having to access the setpoint list. When
trigger=true, the module sends prompt string to the designated port, then captures the user's input value and
saves it in the Val output when the user hits the ENTER key. If port 0 specified, prompt appears on top
line of LCD and user input appears on second line. If high and low limits are specified, the user value will
be ignored if outside that range. Login permission flag: O=any user can input; 1=user must be logged in
first.

Inputs That Must be Constants:

e Display port #...integer that specifies the port number where prompt to be sent and input value to be
obtained (0-2).

Other Inputs:

e Prompt string to send...string to prompt user (max 16 chars on LCD)

e Trigger input...status trigger that will cause prompt to be issued on designated port.
e High limit...floating point value above which user’s input will be ignored.

e Low limit...floating point value below which user’s value will be ignored.

e Login permission flag...0=any user may input value, 1=user must be logged in first.
Primary Outputs:

e User value...Name.Val...floating point value last entered by user
e Have new input...Name.Trg...trigger status output indicating that a new value has been received.

Outputs for Internal Use:
e Internal sequencer...Name.Seq...internal sequencer
e Dsp type copy...Name.Dsp...copy of previous display setup.

Limitations: None

71

Software Modules

Expected Applications:
Use to provide convenient operator input method.

PulseDurationin

The PulseDurationIn module is used to read the duration of pulses on digital inputs. Use one
module for each digital input for which you wish to read pulse durations. Each time an input pulse ends,
the module will output the pulse’s duration in seconds with 4 ms resolution. It will also issue a trigger to
indicate that a new pulse has been received. Additionally, if you have specified a cycle time and scale
factor, the module will calculate the value EU=(K*(PULSE DURATION-MIN PULSE))/CYCLE TIME.
You can use this to read pulses from pulse type flowmeters and convert to engineering units.

Inputs That Must be Constants:
e Channel #...which input channel (1-8) on the board this module uses

Other Inputs:

e Scale factor K...floating point input scale factor for duration to EU conversion equation

e Cycle time sec...floating point input setting the expected pulse repetition time

e Minimum pulse sec...floating point input setting the pulse width that will be regarded as zero value

Primary Outputs:

e Pulse duration sec...Name.Sec...floating point pulse duration

e EU value...Name.Value...floating point engineering units value after conversion

e Had pulse trigger...Name.Hadpulse...trigger status indicating that a new pulse was measured
e Input status...Name.Input...status echo of digital input

Outputs for Internal Use: None
e Missing pulse timer...Name.Tmr...timer for internal use to detect missing pulses

Limitations: None

Expected Applications:
Use this module to measure input pulse durations and to read outputs from pulse duration type instruments.

PulseDurationOut

The PulseDurationOut module is used to generate pulses on digital outputs. Use one module for
each digital output for which you wish to generate pulse durations. Each time the module is triggered, the
module will output the pulse’s duration in seconds with 4 ms resolution. If a cycle time is specified, the
module will repetitively issue a variable length pulse once each cycle. Ranges of pulses and cycle time are
0 to 262 seconds.

Inputs That Must be Constants:
e Channel #...which input channel (1-8) on the board this module uses

Other Inputs:
e Trigger pulse...trigger to start each pulse if cycle time blank
e Cycle time sec...floating point input setting the expected pulse repetition time

Primary Outputs: None

78

Software Modules

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use this module to generate general purpose pulses of precise duration.

PulseToFlow

Module converts pulse rate on a designated digital input to flow rate and sends it to the floating
point database. The calculation is performed at the end of each cycle. For each calculation, the module
reads the number of pulses, and number of seconds since prior cycle end, then applies user’s flow per pulse
factor to calculate average flow rate per second during the cycle. Units of the output flow rate are related to
user’s flow per pulse entry. For example, if flow per pulse is in gallons per pulse, then flow rate would be
gallons per second. To derive GPM, the output in this case must be multiplied by 60 (or the flow per pulse
could be multiplied by 60). The cycle time is in seconds and should be long enough to accumulate multiple
pulses in each cycle. This module requires that a DiginCount module be assigned to the same digital input
to do the counting.

Inputs That Must be Constants:
e Channel #...which input channel (1-8) this module uses

Other Inputs:
e Cycle time, sec...integer time in seconds after which the module will read the count and calculate flow
rate

e Volume per input pulse...floating point factor defining how many gallons are represented by each
input pulse

Preset total volume trig...status input to force preset value to total volume output

Total volume preset value...floating point value to preset total volume when above trigger asserted
Flow rate multiplier...floating point multiplier applied to flow rate after volume calculation
Volume thresh to trigger...floating point setpoint that when exceeded by total flow will cause the
Name.VolTrg trigger to be generated and the volume to be subtracted from total

Primary Outputs:
e Flow rate...Name.Flow...floating point output of flow rate calculation in user defined units
e Total volume...Name.Total...floating point total volume accumulated

e Volume>threshold trigger...Name.VolTrg...trigger status indicating that volume has exceeded
threshold

Outputs for Internal Use:

e Old count...Name.Old...old count to compare against new count reading
e Temp volume...Name.Temp...floating point temporary total accumulator
e Internal timer...Name.Tmr...internal cycle timer, seconds

e Temp count...Name.Tcount...temporary sample counter

Limitations:

Trigger interval should be long enough for the counter to accumulate at least 10 pulses. Trigger interval
must be less than 32767 seconds. Input pulse width must not be shorter than 8 milliseconds; and inter pulse
interval must not be shorter than 8 milliseconds.

79

Software Modules

Expected Applications:
Use this module to provide flow rate from pulse type flow meters rather than using general purpose
counters and time triggers because this module has a more accurate time base.

Setpoint

The setpoint module enables you to specify a setpoint to be added to the RUG3’s setpoint list that
an operator can use to enter values into the RTU’s system to control operations. Access to setpoints in the
RUG3 can be secured with an access code that must be entered correctly before access is granted. The
access code is set in the SysSetup module. When you install a setpoint module, you must enter a setpoint
string that is the prompt to the operator. Typical prompts are: ‘High alarm ft=" and ‘Pump 1 (0=off,
1=hand, 2=auto):’. These prompts will be presented on the RUG3’s LCD or attached terminal in an
alphabetized list with the current setpoint value shown as in the following example:

0 High alarm ft=12.34

1 Pump 1 (0=off, 1=hand, 2=auto): 1
2 Static voltage=1234.56

3 Target level meters=13.8988

If you are using the local LCD, you must keep your prompts to 16 characters or fewer. Notice that the
setpoint module has default value and default installation trigger inputs. Since the RUG3 uses compiled
code, the values of entries in the data bases are not cleared automatically on program installation.
Therefore, setpoints and other data base entries will initially have undefined values or will retain values that
they had prior to the new program being loaded. The default value and trigger enable you to specify a
value to be installed whenever the trigger is true, such as when a key is pressed (using the TrigOnKeyMany
module).

Inputs That Must be Constants: None

Other Inputs:

e Prompt string...string the user will see in the RUG3’s setpoint list

e Trigger install default...trigger status to cause default value to become the setpoint value.

e Default value...floating point value to be installed in the setpoint when the trigger to install default is
true

e Max allowed value...floating point value that is the maximum to be output by the module

e Min allowed value...floating point value that is the minimum to be output by the module

e Visibility (0,1,2)...integer: O=setpoint never shown; 1=shown if logged on; 2=shown always

Primary Outputs:

e Value user entered...Name.SP...present floating point value held by setpoint register.

e New value trigger...Name.NewTrg...status trigger asserted when a new value is entered into the
setpoint, even if it is the same as the previous value.

Outputs for Internal Use: None

Limitations:
Value range is +/-10E+/-38.

Expected Applications:

Use the setpoint module to give the operator a way to input values to be used in control strategies. Values
are saved as floating point, but operator entries can be either floating point or integer. You may use as
many setpoints in your project as you need. Setpoints are presented to the operator up to 10 at a time in an
alphabetized list when accessed on the serial ports; or singly when accessed using the local LCD and
keyboard.

80

Software Modules

ShaftEncoderinput

The ShaftEncoderInput module reads a pair of digital inputs and interprets pulses detected as
shaft encoder outputs. DI's are sampled 256 times per sec. When enabled, this module converts the
accumulated count to engineering units (EU) for the designated channel. The following shaft encoder
standards are supported with the channel interpretation shown:

Type 1: quadrature type...DI1=output A, DI2=output B.

Type 2: count/direction type...DI1=count, DI2=direction (O=down, 1=up)

Type 3: count up/count down type...DI1=up counter, DI2=down counter

Type 4: short pulse count up/count down type...DI1=up counter, DI2=down counter

DI pairs must be used together, i.e., DI1 and DI2, or DI3 and DI4, etc.

To establish EU calibration, enter the value presently being measured by the encoder into a setpoint that is
routed to the 'Present value' input and then trigger the 'Preset trigger' input. The module will record the
value and use it and the 'EU value per increment' to calculate the EU value thereafter. Or you can also
enter the initial value using the GetUserValue module.

Inputs That Must be Constants:
e DI channel 1,3,5,7...which input channel (1,3,5,7) this module uses as the first channel of the pair

Other Inputs:

e Enable...when =1, causes the module to sample and convert its inputs

e EU value per increment...floating point value corresponding to a single input pulse.

e Preset trigger...status input to force preset value to be written to output

e Preset value...floating point value to preset output when above trigger asserted
Type...integer specifying type of shaft encoder to decode. Type 1: quadrature type...DI1=output A,
DI2=output B.
Type 2: count/direction type...DI1=count, DI2=direction (0=down, 1=up)
Type 3: count up/count down type...DI1=up counter, DI2=down counter
Type 4: short pulse count up/count down type...DI1=up counter, DI2=down counter. Minimum pulse
width 300 microseconds.

Primary Outputs:

e Output value...Name.Val...floating point output in user defined units

e Present low (Odd) DI state...Name.Low...status output of present DI state for odd channel
e Present high (Even) DI state...Name.Hi...status output of present DI state for even channel

Outputs for Internal Use:
e Output value at midrange...Name.Mid...value from preset that corresponds to engineering units at

midrange of input counter

Limitations:
Range of pulse counters is -32768 to +32768.

Expected Applications:
Use this module to convert any of the listed shaft encoder types to engineering units output.

81

Software Modules

SysSetup

The SysSetup module is a catchall that is used to establish system parameters such as setpoint
access security code, log-on time out interval, etc. This module is installed automatically each time you
start a new project. Each project should have exactly one of these modules. The entries established by this
module will take place after the first RUG3 program scan following boot up. The log-on timeout interval
sets the time after which log-on will be disabled automatically following the last setpoint access. The
backlight timeout sets the time interval after the last keystroke at which the LCD backlight will be shut off.
Any new keystroke will re-energize the backlight. Leaving the backlight setting blank will cause the
backlight to be energized continuously. System flags: bit 0 ON=suppress minus key menu function on
LCD display (keeps user on realtime display).

Inputs That Must be Constants: None

Other Inputs:
e Programmer sec code...integer security code to grant access to log-on protected items such as setpoints
and tables

e User logon security code...integer security code to grant access to log-on protected items such as
setpoints and tables. Leaving cell blank allows access at any time.

e Logon timeout sec...integer duration in seconds that log-on protected items will be allowed access
after log-on code received or after last setpoint entry.

e Backlight off/on/timeout...integer: O=backlight OFF, 1=backlight ON, >1= duration in seconds that
backlight will stay on after keystroke. Leaving cell blank will keep LCD backlight on continuously.

e LCD contrast ...integer contrast setting control, range is 0-255. Should be about 130.

e Loop supply O=off, 1=on...status to control loop supply on/off.

e Loop supply 0=12v, 1=24v.. .status to control loop supply voltage

e Reference 0=off, 1=on...status to control loop reference voltage (4 VDC) application to DI#8. Leave
this off unless you need a reference voltage to send to potentiometers.

e DI count sample 4ms...integer to control digital input sampling for counters in increments of 4 ms.
Range is 0-255. Use this to slow sampling in order to avoid counting contact bounces.

e System flags...integer flags in packed integer form, blank or zero has no effect: bit 0 (LSB):
ON=suppress minus key menu function on LCD display (keeps user on realtime display).

Primary Outputs:

e Boot Trigger...Name.BootTrg...status trigger to signal program’s first scan after boot up
One second trigger...Name.SecTrg...status trigger issued once per second

Logon status...Name.Logon...status 0=no one logged on; 1=operator logged on

Batt voltage V...Name.BattV .. .floating point engineering units onboard battery voltage
Temperature F...Name.TempF...floating point onboard temperature in degrees Fahrenheit.
Five second trigger...Name.Sec5Trg.. .status trigger that occurs once each 5 seconds

Scans per second...Name.Scans...integer program scans per second

OS revision...Name.Rev...integer echo of operating system revision, e.g., 205=version 2.05.

Outputs for Internal Use: None
Limitations:
Security codes must be less than 7 digits. Log-on and backlight timeout durations must be less than 32,768

seconds.

Expected Applications:
Used in all projects to provide commonly used services.

82

Software Modules

Math Modules

BitsToNumeric

This module converts up to 16 status bits to their equivalent integer value. Input bits are binary
weighted and added to produce the result. Bit 1 is the least significant bit with a value of 1; bit 2 has a
value of 2, bit 3 has a value of 4, bit 4 has a value of §, etc. For example, if status inputs are dragged into
bits 1 through 4 and bits 1 and 3 happen to be turned on (1) then the output of the module will be 1 +4 =5.
Inputs That Must be Constants: None
Other Inputs:

e Bit 1(LSB) through Bit16(MSB)...status inputs representing a 16 bit integer word that this module is

to convert to an integer value. Blank inputs are assumed to have zero value.

Primary Outputs:
e QOutput...Name.Out...integer output equivalent to binary weighted sum of status inputs.

Outputs for Internal Use: None

Limitations:
Output is unsigned integer in range of -32767 to 32768; bit 16 is regarded as a sign bit.

Expected Applications:

Module is used to convert status inputs to an equivalent integer value. Also used to convert any field of
statuses received in a telemetry status word to an integer value.

Constant

The Constant module makes constant available to modules in both floating and integer form. It
can also be used to convert an input variable to float and integer. Input value is rounded before conversion
to integer.

Inputs That Must be Constants: None

Other Inputs:
e Value input...floating point value to be output as both floating point and integer.

Primary Outputs:

e OQOutput float...Name.Float...floating version of input
e OQOutput integer...Name.Int...integer version of input
Outputs for Internal Use: None

Limitations: None

Expected Applications:
Used to provide simple constant for use by other modules in both floating point and integer form.

&3

Software Modules

Cosine

When enabled, the Cosine module calculates Y=Cos(X) where X is any value in radians and result
Y is in the range of -1.0 to +1.0.

Inputs That Must be Constants: None

Other Inputs:
e Enable...status input: 1=perform calculation, O=hold output value
e X...floating point value in radians.

Primary Outputs:
e Y...Name.Out...floating point cosine output

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used in some volume and flow rate calculations.

FloatTolnteger

The FloatTolInteger module converts an input floating point value to a pair of integers. The
resulting most significant integer and least significant integer are produced by dividing the input value by a
user specified divisor and saving the quotient (most significant) and remainder (least significant). In this
manner, a large number, such as a flow total or large event counter can be split into two 16 bit integers for
installation into a transmit telemetry array to send to another site without loss of precision. For example, if
a totalization results in a value of 12345678 and that is the input to this module; and the divisor is 10,000,
then the most significant result integer would be 1234 and the least significant result integer would be
5678. Both of these numbers are below the limit of 32,768 that can be installed into a 16 bit telemetry
word.

Inputs That Must be Constants: None

Other Inputs:
e Input value to convert...floating point or integer value to be split into two integers
e Divisor...floating point or integer divisor

Primary Outputs:
e MS part integer...Name.MS...integer quotient, most significant result
e LS part integer...Name.LS...integer remainder, least significant

Outputs for Internal Use: None
Limitations:
Expected Applications:

Module is used to split large numbers into less significant components for use in shorter word length
registers such as telemetry arrays.

84

Software Modules

FlowAGA3

This module calculates gas flow through an orifice using standard AGA3 calculation:
When enabled, calculates:
Q=0.0005167*(Default factor)*Fg*Fpb*Ftb*Ftf*Fb. Result flow Q is cu meters/day.
Default factor=Ft*Y*Fpv*Fm*Fa*F] and should be set = 1.00 for most applications. See documentation.
In above flow calculation:
Fg=sqrt(1/G) where G=specific gravity of gas.
Fpb=pressure base factor, =1.0055 for base pressure of 101kPa.
Ftb=temperature base factor, =1.00 for base temperature of 15.0 degC.
Ftf=flowing temperature factor, =sqrt(288.7 degK/(T+273.15 degK)).
Fb=Dbase orifice factor from AGA3 tables.

Inputs That Must be Constants: None

Other Inputs:

Enable...status input: 1=perform calculation, O=hold output value

Default factor...floating point default factor in calculation (normally 1.000)

G gas specific gravity...floating point specific gravity used to calculate specific gravity factor
Fpb pressure base factor...floating point pressure base factor (1.0055 for base pressure of 101kPa
Ftb temperature base factor...floating point temp base factor (1.000 for base temp of 15.0 degC
T temperature, deg C...floating point temperature from which Ftf is calculated

Fb base orifice factor...floating point base orifice factor from AGA3 table.

Primary Outputs:
¢ Q Flow CuMPerDay...Name.flow...floating point flow result in cubic meters per day

Outputs for Internal Use: None
Limitations: None

Expected Applications:

FlowCipolletiRect

This module calculates the flow through an open rectangular channel with either Cipolletti weir,
rectangular weir, or rectangular weir with end contractions. Units of the calculation result can be specified
as one of four types: CFS, GPM, GPS and MGD. If the calculated flow falls below the specified low flow
dropout, then the output of the module is clamped at 0.0.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result

e Desired flow units (1-4)...integer to select flow units of this calculation: 1=CFS, 2=GPM, 3=GPS,
4=MGD

e Low flow dropout...floating point engineering units flow value below which the flow will be regarded
as 0.0.

e Fluid level, ft...floating point level in feet of fluid above bottom of weir.

e Crest length, ft...floating point width in feet of bottom of weir.

e Type, 1-3...integer type of weir, 1=Cipolletti, 2=rectangular to width of channel, 3=rectangular with
end contractors

85

Software Modules

Primary Outputs:
e Flow in user units...Name.flow...floating point flow result in specified units

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Provides accurate flow calculation for selected weir.

FlowContainer

The FlowContainer module calculates flow based on the time it takes to fill or empty a tank of
specified cross section and height. It has two modes of operation. 1) if there is a tank level transducer, the
module calculates the flow as the tank is emptying or filling and any local pump is not running, based on
the changing tank level. If there is no tank level transducer, the module calculates flow based on the time it
takes to empty/fill the tank during pump off time, calculating volume from area and span between pump
call and off setpoints. The module holds the flow constant during any local pumping.

Inputs That Must be Constants: None

Other Inputs:

e Tank level, ft...floating point tank level from tank transducer, if any. If no tank level transducer, leave
blank.

e Tank area, ft...floating point tank cross sectional area, sq. ft.

e Pump running status...status indicating running status of any pump filling (pump up) or emptying
(pump down) the tank.

e Delay sec after pump off...floating point delay time after pump off detected before calculation of flow
rate to give time for tank level to settle.

e Tank level span, ft...floating point span between pump call and off setpoints for case where there is no
tank level transducer.

Primary Outputs:

o Flow rate, CFS...Name.CFS...flow rate in CFS calculated from tank geometry and pump cycling time

e Flow rate, GPM...Name.GPM... flow rate in GPM calculated from tank geometry and pump cycling
time

Outputs for Internal Use:

e Timer...Name.Tmr...integer internal pump cycling timer, 1.0 sec.

e Temp level...Name.Tmp...floating point level latch for rise/fall calculation
e Old pump run state...Name.Oldrun...status image of last pump run state

Limitations:
Expected Applications:

Module enables you to calculate flow into or out of a tank based on pump cycling and tank geometry when
there is no flow meter to measure tank flow.

86

Software Modules

FlowConvert

This module converts flow in CFS to other units (CFS, GPM, GPS, MGD) and also applies low
flow dropout to clamp flow to zero if the input flow value is below a user defined value.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Flow input...floating point flow input value in CFS

e Desired flow units (1-4)...integer to select output flow units, 1=CFS, 2=GPM, 3=GPS, 4=MGD

e Low flow dropout user units...floating point threshold in output engineering units below which the
output of the module will be set to 0.0

Primary Outputs:
e Flow in user units...Name.flow...floating point output flow in selected units

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to supply low flow dropout function, or flow units conversion function or both.

FlowHFlume

This module calculates the flow through an open rectangular H-type flume. Units of the
calculation result can be specified as one of four types: CFS, GPM, GPS and MGD. If the calculated flow
falls below the specified low flow dropout, then the output of the module is clamped at 0.0.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Desired flow units (1-4)...integer to select flow units of this calculation: 1=CFS, 2=GPM, 3=GPS,
4=MGD

e Low flow dropout...floating point engineering units flow value below which the flow will be regarded
as 0.0.

e Fluid level, ft...floating point level in feet of fluid above bottom of flume.

e Flume width, ft...floating point width in feet.

Primary Outputs:
e Flow in user units...Name.flow...floating point flow result in specified units

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Provides accurate flow calculation for selected flume.

87

Software Modules

FlowPalmerBowlus

This module calculates the flow through a Palmer-Bowlus flume. Units of the calculation result
can be specified as one of four types: CFS, GPM, GPS and MGD. If the calculated flow falls below the
specified low flow dropout, then the output of the module is clamped at 0.0.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Desired flow units (1-4)...integer to select flow units of this calculation: 1=CFS, 2=GPM, 3=GPS,
4=MGD

e Low flow dropout...floating point engineering units flow value below which the flow will be regarded
as 0.0.

o Fluid level, ft...floating point level in feet of fluid above bottom of flume.

e Flume width, in...floating point flume width in inches.

Primary Outputs:
e Flow in user units...Name.flow...floating point flow result in specified units

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Provides accurate flow calculation for selected flume.

FlowParshallLADWP

This module calculates the flow through a Parshall flume of specified widths. Units of the
calculation result can be specified as one of four types: CFS, GPM, GPS and MGD. If the calculated flow
falls below the specified low flow dropout, then the output of the module is clamped at 0.0. Allowed flume
widths in ft are: 0.5, 0.75, 1.0, 2.0-8.0 (any value), 10, 12, 15, 20, 25, 30, 40, 50.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Desired flow units (1-4)...integer to select flow units of this calculation: 1=CFS, 2=GPM, 3=GPS,
4=MGD

e Low flow dropout...floating point engineering units flow value below which the flow will be regarded
as 0.0.

e Fluid level, ft...floating point level in feet of fluid above bottom of flume.

e Flume width, in...floating point flume width in inches.

Primary Outputs:
e Flow in user units...Name.flow...floating point flow result in specified units

Outputs for Internal Use: None

Limitations: None

88

Software Modules

Expected Applications:
Provides accurate flow calculation for selected flume.

FlowQ=A*(H+B)**C

This module calculates the flow through an open channel whose flow can be calculated by the
general purpose equation Q=A*(H+B)**C. In this equation A, B and C are constants related to the
geometry of the channel and H is gauge height in feet. Q is flow in CFS.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result

e H...floating point gauge height in feet

e A, B, C...floating point values characterizing the channel. C can be non-integer.

e Low flow dropout...floating point engineering units flow value below which the flow will be regarded
as 0.0.

Primary Outputs:
e Flow in user units...Name.flow...floating point flow result in specified units

Outputs for Internal Use: None

Limitations:
C must be greater than zero; or, if it is negative, the quantity (H+B) must be positive.

Expected Applications:
Provides accurate flow calculation for selected flume.

FlowTrapezFlume

This module calculates the flow through a Trapezoidal flume of one of three types: 1) large 60
degree, 2) 45 degree WSC, or 3) 45 degree SRCRC. Units of the calculation result can be specified as one
of four types: CFS, GPM, GPS and MGD. If the calculated flow falls below the specified low flow
dropout, then the output of the module is clamped at 0.0.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, I=calculate new result

e Desired flow units (1-4)...integer to select flow units of this calculation: 1=CFS, 2=GPM, 3=GPS,
4=MGD

e Low flow dropout...floating point engineering units flow value below which the flow will be regarded
as 0.0.

e Fluid level, ft...floating point level in feet of fluid above bottom of flume.

e Flume Type (1-3)...integer type specifier: 1=large 60 degree, 2=45 degree WDC, 3=45 degree SRCRC.

Primary Outputs:
e Flow in user units...Name.flow...floating point flow result in specified units

89

Software Modules

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Provides accurate flow calculation for selected flume.

Limit

The Limit module range tests and limits a value to the range set by the upper and lower setpoints
specified, then outputs the range-limited result.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Input variable X...floating point variable whose range is to be limited.
e Upper limit U...floating point upper limit X is not to exceed

e Lower limit L...floating point lower limit X is not to fall below

Primary Outputs:
Output Y...Name.LIM...Floating point result clamped to the range of Y=L<=X<=U.

Outputs for Internal Use: None
Limitations:

Expected Applications:
Used to range check floating point and integer variables. Note that the original variable X is unchanged.

LowPassFilter

The LowPassFilter module applies a low pass filter algorithm to slow the response of the output to
changes in the input, then range tests and limits the value to the range set by the upper and lower setpoints
specified, then outputs the range limited result. The longer the low pass filter time constant, the more
slowly the output will follow the input and the more immune the output will be to transients on the input.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, I=calculate new result

e Input value...floating point variable whose value is to be low pass filtered and whose range is to be
limited.

o Filter time const sec...integer filter time constant, seconds...typical 5 to 30 seconds

e High output limit...floating point upper limit output is not to exceed

e Low output limit...floating point lower limit output is not to fall below

Primary Outputs:
Filtered output...Name.Out...Floating point low pass filtered result clamped between high and low limits

90

Software Modules

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used to slow a signal’s response to transients and clamp its value.

Maskinteger

This module logically AND’s an input integer with a mask word to isolate selected bits. The mask
must be entered in decimal. To mask (set to zero) all bits except certain ones, the mask must be the sum of
the decimal equivalents of the bits you wish to let pass through. For example, to allow the input integer’s
bits 2, 3 an 4 to be passed to the output, a mask value of 14 would be required. The following table gives
binary to hexadecimal to decimal equivalents for 16 bit words:

Table 5 Binary to Hexadecimal to Decimal Conversions

BINARY HEXADECIMAL DECIMAL
0000000000000001 $1 1
0000000000000010 $2 2
0000000000000100 $4 4
0000000000001000 $8 8
0000000000010000 $10 16
0000000000100000 $20 32
0000000001000000 $40 64
0000000010000000 $80 128
0000000100000000 $100 256
0000001000000000 $200 512
0000010000000000 $400 1024
0000100000000000 $800 2048
0001000000000000 $1000 4096
0010000000000000 $2000 8192
0100000000000000 $4000 16384
1000000000000000 $8000 32768

Inputs That Must be Constants: None
Other Inputs:
e Input integer...integer to be masked

e Mask (decimal)...integer mask to be ANDed with the input integer

Primary Outputs:
e OQOutput integer...Name.MskInt...result of (Input Integer AND Mask).

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used to isolate individual bits or multiple bit fields enabling use of portions of integers in control strategies.

91

Software Modules

NumericToBits

This module splits an integer value into its constituent bits, providing 16 single status outputs from
an integer input.

Inputs That Must be Constants: None

Other Inputs:
e Enable...status input, 0=hold result, 1=calculate new result
e Integer to convert...Integer input to split into bits

Primary Outputs:
e Bit 1 LSB...Name.B1...status output echoing the least significant bit of the input integer
e Bit2...Name.B2...status output echoing the next to the least significant bit of the input integer

e Bitl6 MSB...Name.B16...status output echoing the most significant bit of the input integer
Outputs for Internal Use: None
Limitations: Only works for 16 bit integers or floating point values <65536

Expected Applications:
Used to unpack bits stored or transmitted as integers.

NumericToString

The numeric to string module provides a way whereby you can cause the RUG3 to format a
floating point numeric value in specific ways, including controlling number of leading blanks, leading
zeroes, trailing blanks, and trailing zeroes. The string output appears in the string database for use in other
modules that require string inputs, such as the SendStringtoPort module. In the inputs to this module you
specify the variable whose value is to be converted, and also the format. The format consists of a floating
point number such as 7.3, to specify how many characters are to appear to the left and right of the decimal.
The value 7.3 would specify 7 places to the left of the decimal point, and 3 places to the right of the
decimal. You also specify how to fill the areas to the left and right of the numeric string result. Your
choices are 0) no fill, 1) fill with blanks, or 2) fill with zeroes. For example, if the value to be converted is
1234.5 and you specified a format of 7.3, with zeroes to fill to the left, then the resulting string would be
“0001234.500”.

Inputs That Must be Constants:
e Max output characters...integer constant that defines how long the longest string will be produced by
the module. Commonly set to 32.

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result

e Input value to convert...floating point or integer value to convert to specified format.

e Format...floating point value such as 4.3 to specify number of characters of precision to be shown to
the right and left of the decimal. The value 4.3 would specify that the output string would be formatted
with four places to the left of the decimal and three places to the right of the decimal.

e Leading fill flag...integer: O=no fill, 1=fill with blanks, 2=fill with 0’s.

Primary Outputs:
e Output string...Name.Strg.. .string version of floating point input in specified format.

92

Software Modules

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to format numbers into specific formats for transmission to other devices such as other RTU’s or
output devices.

PackValues

The PackValues module will pack up to four values into a single 16 bit integer. This is useful for
shrinking telemetry messages and logged data record sizes. For each input, the module adds an offset and
then multiplies the input floating point or integer value by the multiplier, then packs the result into a single
integer using the bits allocated for each input. Input #1 would be placed in the least significant bits of the
output integer. Input #2 would be placed in the next most significant bits, etc. The following numbers of
bits allocated to each input give the following potential ranges:

Allocate 1 bit=0-1 allocate 6 bits=0-63 allocate 11 bits=0-2047

Allocate 2 bits=0-3 allocate 7 bits=0-127 allocate 12 bits=0-4095

Allocate 3 bits=0-7 allocate 8 bits=0-255 allocate 13 bits=0-8191

Allocate 4 bits=0-15 allocate 9 bits=0-511 allocate 14 bits=0-16383

Allocate 5 bits=0-31 allocate 10 bits=0-1023 allocate 15 bits=0-32767

Inputs whose value is below zero will have all bits set to zero; inputs whose value exceeds the maximum
value of its allocated bits will have all bits set to 1.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Input #1-4 to convert...status, integer or floating point number to be packed into the output integer.
The first blank entry marks the end of the input list.

e Offset #1-4...floating point offset that is added to the input before packing.

e Multiplier #1-4...floating point multiplier that multiplies the input+offset to create the final value to be
packed.

e Bits allocated to #1-4...integer number of bits in range of 1 to 15 that specifies how many bits in final
result are allocated for this measurement

Primary Outputs:
e OQOutput integer...Name.Int... 16 bit integer that is the packed result of all (up to 4) inputs.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use this module to pack values together to reduce telemetry size or to reduce logged record size.

93

Software Modules

PolynomialNthOrder

The polynomial module calculates up to a 12-th order polynomial result based upon the
coefficients, the order designator and an input X. The polynomial equation is
Y=a+b*X+c*X"2+d*X"3...+m*X"12.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result
e Input X...floating point input

e N...integer setting the order of the calculation

e a...m...floating point coefficients of the polynomial

Primary Outputs:
e Y...Name.Out...floating point result of the polynomial calculation

Outputs for Internal Use: None
Limitations: None
Expected Applications:

Used to specify a general purpose function not definable by other means, such as for linearizing transducers
among other applications.

Sine

When enabled, the Sine module calculates Y=Sin(X) where X is any value in radians and result Y
is in the range of -1.0 to +1.0.

Inputs That Must be Constants: None

Other Inputs:
e Enable...status input: 1=perform calculation, O=hold output value
e X...floating point value in radians.

Primary Outputs:
e Y...Name.Out...floating point sine output

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used in some volume and flow rate calculations.

94

Software Modules

SuccessiveSampleFilter

When triggered, the SuccessiveSampleFilter module tests the last N samples collected. If all are
within the deadband of each other, then the last sample is sent as output. Otherwise, the output is
unaffected. Use to filter out intermittent erroneous values.

Inputs That Must be Constants: None

Other Inputs:

e Input value...floating point input

e Trigger save sample and test...status input, O=hold result, 1=calculate new result

e N samples to test (2-10)...integer setting the number of samples to save and use to calculate result

e Deadband...floating point value that sets the range over which a new value and collected samples must
be within before the new value will be sent to the output

Primary Outputs:
o Filtered output...Name.Out...floating point output. This will be the new sample if the new sample and
all collected samples are within the deadband of each other.

Outputs for Internal Use:
e Index to samples...Name.ldx...integer index to collected samples
e Sample (1-10)...Name.S1-S10...floating point samples collected

Limitations: None

Expected Applications:
Use this module to sample floating point values and reject spikes in values.

SummingAccum

When triggered, the SummingA ccum module adds a new input value to the accumulated value.
Preset trigger installs the preset value into accumulator. Output trigger indicates when new value has been
added. This is a form of totalizer that lets you control the sampling.

Inputs That Must be Constants: None

Other Inputs:

e Trigger add new value...status input, O=hold result, 1=add input value to accumulator

e New value to accumulate. ..floating point input

e Trigger preset accumulator...status that will install a preset value into the accumulator

e Preset value...floating point value that is transferred to accumulator output when above trigger
asserted

Primary Outputs:

e Accumulator value...Name.Accum...floating point output. This will be the sum of all values present
when the trigger was asserted.

e Trigger have new value...Name.NewTrg...Status trigger asserted after a new value has been added to
the accumulator.

95

Software Modules

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use this module to totalize values at irregular intervals or when events occur.

Tangent

When enabled, the Tangent module calculates Y=Tan(X) where X is any value in radians and
result Y can have any value in the floating point range.

Inputs That Must be Constants: None

Other Inputs:
e Enable...status input: 1=perform calculation, O=hold output value
e X in radians...floating point value in radians.

Primary Outputs:
e Y...Name.Out...floating point tangent output

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used in some volume and flow rate calculations.

TrigToNumeric

This module accepts up to 16 status or trigger inputs and outputs the numeric position in the list of
the first one that is true. For example, if input number 5 is on and all others are off, then the module’s
output value would be 5. That value would remain latched in the output until another input turns on.

Inputs That Must be Constants: None

Other Inputs:
Bit 1 LSB...status input which would give an output value of 1 if turned on

e Bit2...status input which would give an output value of 2 if turned on

o ..

e Bitl6 MSB...status input which would give an output value of 16 if turned on

Primary Outputs:

e QOutput...Name.Out...integer output with value of lowest numbered input that is on; or last one that

was on
Outputs for Internal Use: None

Limitations: None

96

Software Modules

Expected Applications:
Used as an addressable latch to latch the last trigger to turn on.

Miscellaneous Math Modules

The math modules listed below take an input value X and apply the respective calculations on it to
produce a floating point result Y. Disallowed calculations such as negative numbers to fractional powers,
or divide by zero will return zero. The modules are:

Y=X"Z (Power)

Y=sqrt(X) (Square root)

Y=A*B (Simple product)
Y=A*B*C*D*E*F*G*H*J (Product)
Y=A*B+C*D+E*F+G*H (Sum of products)

Y=A/B (Simple quotient)

Y=A+B (Simple sum)
Y=A+B*C/D-E (Misc calculation)
Y=A+B*eNX+C) (Exponential)
Y=A+B*rand(1) (Random number generator)
Y=A+B+C+D+E+F+G+H (Sum of terms)
Y=A+B+C+D-E-F-G-H (Sum of four terms-sum of four terms)
Y=A-B (Simple difference)
Y=abs(X) (Absolute value)

Y=log(X) (Natural logarithm)
Y=log10(X) (Common logarithm)
Y=M*X+B (Rescaling with offset)

Inputs That Must be Constants: None

Other Inputs:
e Enable...status input, 0=hold result, 1=calculate new result
e All inputs are floating point. Integer or status inputs are allowed.

Primary Outputs:
e Y...Name.Out...floating point result.

Outputs for Internal Use: None
Limitations:
e Arguments of sqrt, log and log10 must be positive. Divisors must be nonzero. Any violations will

result in zero result.

Expected Applications:
General purpose math.

UnpackToFloat

The UnPackToFloat module unpacks a designated portion of a 16 bit input integer into a floating
point output. The module isolates the designated bits as a zero-based unsigned integer then multiplies that
value by the multiplier, and finally adds the offset to produce the floating point output. LSbit to include
designates the least significant bit in the input integer that is to be in the result field. Similarly, the MSbit

97

Software Modules

to include designates the most significant bit in the input integer to be included in the result. For example,
if the input integer has the following bits: (MS) 0001110111100101 (LS) and the LS bit to include is 2, and
the MS bit to include is 5, then the field extracted would be 1001 or a value of 9. That would be multiplied
by the multiplier and then the offset would be added to create the output result. You will need one of these
modules to unpack each of the (up to 4) values packed by the PackValues module.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status to enable the unpacking process. Blank or non-zero value enables unpacking.

e Input integer to unpack...integer containing one or more values to be unpacked.

e LS bit to include (0-15)...integer specifying which bit of the input integer constitutes the least
significant bit of the value to be unpacked.

e MS bit to include (0-15)...integer specifying which bit of the input integer constitutes the most
significant bit of the value to be unpacked.

e Multiplier...floating point multiplier that multiplies the bits extracted from the input integer.

e Offset...floating point offset that is added to the multiplied value to produce the final output value.

Primary Outputs:
e Floating point value...Name.FloatVal...Floating point result that is reconstruction of original packed
value.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use this module to recover value packed into an integer by the PackValues module.

UnpackTolnt

The UnPackToInt module unpacks a designated portion of a 16 bit input integer into an integer
output. The module isolates the designated bits as a zero-based unsigned integer then multiplies that value
by the multiplier, and finally adds the offset to produce the integer output. LSbit to include designates the
least significant bit in the input integer that is to be in the result field. Similarly, the MSbit to include
designates the most significant bit in the input integer to be included in the result. For example, if the input
integer has the following bits: (MS) 0001110111100101 (LS) and the LS bit to include is 2, and the MS bit
to include is 5, then the field extracted would be 1001 or a value of 9. You will need one of these modules
to unpack each of the (up to 4) values packed by the PackValues module.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status to enable the unpacking process. Blank or non-zero value enables unpacking.

e Input integer to unpack...integer containing one or more values to be unpacked.

e LS bit to include (0-15)...integer specifying which bit of the input integer constitutes the least
significant bit of the value to be unpacked.

e MS bit to include (0-15)...integer specifying which bit of the input integer constitutes the most
significant bit of the value to be unpacked.

Primary Outputs:
e Integer output...Name.IntVal...Integer result that is reconstruction of original packed value.

98

Software Modules

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use this module to recover value packed into an integer by the PackValues module.

Control Modules

AlarmHilLo

The AlrmHiLo module compares a floating point value with high and low alarm setpoints and, if
the value exceeds the high setpoint for the period of a specified delay, turns on its high alarm output. If the
input value falls below the low alarm setpoint for the specified delay, then the low alarm output is turned
on. Ifits delay is unspecified, then no delay will be applied. If the delay is specified and is set to zero,
then the alarms will be disabled. Otherwise, the alarm must be true for the specified delay period before
the output will turn on. If the alarm subsequently falls back within the setpoints, the status outputs will turn
off without delay.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Input level...floating point value to be compared against a setpoint.

e High alarm setpoint...floating point setpoint against which the input is compared to determine if a high
alarm condition is present.

o Low alarm setpoint...floating point setpoint against which the input will be compared to determine if a
low alarm condition is present.

e Delay, sec...integer period in seconds that the setpoint must be exceeded to declare an alarm. If the
delay is zero, then the alarms are disabled.

Primary Outputs:
e High alarm output...Name.HiAlrm.. status that becomes true if high alarm declared by comparison
e Low alarm output...Name.LoAlrm...status that becomes true if low alarm declared by comparison

Outputs for Internal Use:
e Delay timer...Name.Timer...integer countdown delay timer counting seconds

Limitations: None

Expected Applications:
Used to detect and alarm when a field value such as tank level, flow, temperature, etc. goes too high or low.

99

Software Modules

ANDgate

Performs the logical AND of the 8 status inputs. If all specified status inputs are ON (1 is on
AND 2 is on AND 3 is on...) then the module’s true status output (ANDout) will be on. If any of the status
inputs is OFF, then the true status output will be off. Any unused status inputs, i.e., any that are left blank,
will be ignored. The ANDbar output is the complement of the true output, i.e., it will be off when ANDout
is on, and it will be on when ANDout is off.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result
e Input #1...status input to be ANDED with others

e Input #2...status input to be ANDED with others

o Input #8...status input to be ANDED with others

Primary Outputs:
e AND output...Name.ANDout...status output that will be true only if all specified inputs are ON
e Inverted output...Name.ANDbar...status output that will be true if any specified input is OFF

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use the AND module to logically combine other statuses to detect when they are all on. Also use the AND
module to invert a status (using the ANDbar output).

BackspinTimer

The BackspinTimer input status will be passed to the output status if the timer has timed out.
Otherwise, the output will be unaffected unless a force input is asserted. Force ON status true will force the
output ON independent of the timer. Force OFF status true will force the output OFF independent of the
timer. When the output switches state, the timer will be restarted and output changes demanded by the
main input status will be prohibited until the timer times out. Force timer restart true will restart the timer
based on external event. Time delay has one second resolution and 32767 seconds range.

Inputs That Must be Constants: None

Other Inputs:

e Input status...status to be transferred to the output only after the timer has timed out.

e Time delay, sec...integer time delay in seconds.

e Force ON status...if true, forces the output on and restarts the timer.

e Force OFF status...if true, forces the output off and restarts the timer.

e Force timer restart...if true, forced the timer to restart its count down from the time delay input.

Primary Outputs:
e OQutput status...Name.Run...status that echoes the input status once the timer has timed out.

100

Software Modules

Outputs for Internal Use:
e Timer...Name.Tmr...integer down counter that counts down one count per second.

Limitations:
Count range is 0 to +32767 seconds.

Expected Applications:
Use to delay an output change until delay seconds after the previous change. This is useful to keep on
output that controls say, a pump, from switching on/off too frequently.

ClearMemory

When trigger=true, the ClearMemory module erases all user memory (RAM), i.e., sets all RAM
contents to zero. Note that this will erase all setpoints, logged values and totals. Program memory
(FLASH) will be unchanged.

Inputs That Must be Constants: None

Other Inputs:
e Trigger erase RAM...status trigger input that when true will set all user memory to zero.

Primary Outputs: None
Outputs for Internal Use: None

Expected Applications:
Use this module to set all RAM to zero so that setpoints, totals and telemetry values upon a startup of a
program will have known, zero values.

Counter

The Counter module is a general purpose up counter for counting events. It can also function as a
sequencer. The counter increments its count at each OFF to ON transition of its status input. The counter
is a signed 16 bit integer, so it can have negative as well as positive values. The module’s preset trigger
will cause the preset value to be installed as the new count when triggered.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Status input...status whose low to high transitions are to be counted

e Preset trigger...status input which, when true, will cause the preset value to be installed as the present
count

e Preset value...integer that will be installed as the count when the preset trigger is true.

Primary Outputs:
e Count...Name.Cnt...integer value presently held by counter

Outputs for Internal Use:
e Old input...Name.Old...copy of last status input to detect rising edge

101

Software Modules

Limitations:
Count range is —32768 to +32767.

Expected Applications:
Use for general event counting and sequencing.

CounterUpDNRollover

The CounterUpDnRollover module is a general purpose up/down counter for counting events
and sequencing. It can also function as a sequencer. When enabled, the counter will increment its count at
each OFF to ON transition of its count up trigger status input; and will decrement its count on each OFF to
ON transition of its count down trigger status input. The counter is a signed 16 bit integer, so it can have
negative as well as positive values. The module’s four preset triggers will cause the associated preset value
to be installed as the new count when triggered. If the counter hits its max or min count value, it will either
stop counting (if mode=0 or blank) or roll over/back (if mode=1).

Inputs That Must be Constants: None

Other Inputs:

e Enable input...status that, when false, prohibits counting

Count up trigger...input status that will increment the counter state on an OFF to ON transition

Count down trigger...input status that will decrement the counter state on an OFF to ON transition

Max count...integer highest state value allowed by counter

Min count...integer lowest state value allowed by counter

e Mode...integer mode setting: O=stop when hit min or max count, 1= rollover when hit min or max
count

e Preset triggers(4)...status inputs which, when true, will cause the associated preset value to be installed
as the present state

e Preset value...integer that will be installed as the state when the corresponding preset trigger is true.

Primary Outputs:
e Counter...Name.Count...integer value presently held by counter

Outputs for Internal Use:
o Copy of triggers...Name.Copy...copy of last status input to detect rising edges

Limitations:
Count range is —32768 to +32767.

Expected Applications:
Use for general event counting and sequencing.

102

Software Modules

Deadband

The Deadband module compares an input floating point value with a setpoint and a deadband
value. If the input value is within the deadband of the setpoint, either above or below, then the module
declares that the value is within the deadband. If not, then the module declares that the value is outside the
deadband. If the value is above the (value + deadband), then the module will also declare that value is
above the deadband. Also, if the value is below the (value-deadband), then the module will declare that the
value is below the deadband.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result

e Input value...floating point value that is being tested.

e Setpoint...floating point value at center of deadband

e Deadband...floating point value that is added to and subtracted from the setpoint in making the
deadband tests

Primary Outputs:

e Within deadband...Name.Inside...status output that will be true if the input value is closer to the
setpoint than the deadband value.

e Outside deadband...Name.Outside...status output that will be true if the input value is either larger
than the setpoint + deadband, or smaller than the setpoint — deadband.

e Above deadband...Name.Above...status output that will be true if the input value is larger than the
setpoint + deadband.

e Below deadband...Name.Below...status output that will be true if the input value is smaller than the
setpoint — deadband.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used to detect that an analog value is outside a desired value and needs to be adjusted.

DelayTimer

Accepts an input trigger, delays for a user specified delay period, and than issues a new trigger.
Basically, this module implements a way to delay triggers. The module also provides a status output while
the timer is running, so it can be used to generate a variable pulse width status. Timer resolution is 1.0
second. Timer range is 32767seconds.

Inputs That Must be Constants: None

Other Inputs:
e Preset trigger...trigger status input to begin delay and preset the delay timer to the delay value.
e Preset value sec...floating point input to set time delay

Primary Outputs:

e Timer running...Name.Run...status output indicating that the delay timer is running

e Timer done trigger...Name.Trig...status trigger output that goes true when timer is done
e Timer...Name.Tmr... integer countdown delay timer counting each second

103

Software Modules

Outputs for Internal Use: None
Limitations:None

Expected Applications:
Use this module to delay triggers as necessary to assure that other functions are ready before the trigger is
ready. Also use it to generate variable pulse width pulses.

EORgate

Exclusive OR gate is used to detect when two status inputs match and when they mismatch. The
exclusive OR gate’s true output (EORout) turns ON if the two status inputs are different; and turns OFF if
the two inputs are the same. The inverted output (EORbar) is the inverse of the true output. The EORgate
can also be used to selectively invert or not invert a status by feeding the status to one of the EORgate
inputs and using a second status to select whether the status is to be passed unchanged, or inverted. If the
control status is OFF, then the first status is passed unchanged; if the control status is ON, then the first
status is passed inverted.

Inputs That Must be Constants: None
Other Inputs:

e Input #1...status input to EOR gate

e Input #2...status input to EOR gate

Primary Outputs:

e EOR output...Name.EOR...exclusive OR of two status inputs

o Inverted output...Name.EORbar...exclusive NOR or two status inputs
Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use to test status mismatches and to selectively invert/not invert a status input.

104

Software Modules

EventFIFOQueue

The EventFIFOQueue module accepts event request statuses and queues them up in the order
received, and then enables their corresponding outputs singly in the order received. An event is active as
long as its status input is true. When its status input reverts to false, the module will turn that event’s
output off, advance the queue to the next event that was received and enable that event’s status output. The
module will also advance the queue and enable the next output when the override timer times out, or when
the trigger to advance the queue is true. The purge queue trigger clears entire queue. If an event becomes
false before advancing to the output, it will remain in the queue until it is the oldest in the queue, then will
be active for one scan. If an event is in the queue already, a new copy will not be added to the queue.

This module is useful for sequencing equipment in an order based on the need for service rather
than on any predetermined order. For example, a collection of filters could be backwashed in the order that
their differential pressures indicate that they have become clogged. As each filter’s differential pressure
exceeds a threshold, its ‘need to backwash’ status would be set, which would be the event status input to
this module. This module would then turn on an output bit for the filter that indicated it needed backwash
first. At the end of that filter’s backwash cycle, the ‘need to backwash’ bit would be turned off by other
logic. This module would then turn off that filter’s backwash bit and turn on the backwash bit for the next
filter that indicated that it needed to be backwashed. This would continue until all filters that needed
service had been backwashed.

Inputs That Must be Constants: None

Other Inputs:
e Enable...status input that when blank or true enables the module’s functions; when false, disables the
module.

e Override time delay sec...integer delay in seconds beyond which an active event will be abandoned
and the queue will advance to the next event.

o Event 1-8 statuses...status inputs that indicate the need for an event to be added to the queue. As each
status turns on, its event number (1-8) is added to the event queue to be processed.

e Purge queue trigger...status input that when 1 causes the module to clear the queue and turn off all
event outputs.

e Advance queue trigger...status input that will force the existing event to be abandoned and the next
one in the queue to become the active event output.

Primary Outputs:
e Status 1-8 outputs...Name.S1-S8...status outputs one of which will be true corresponding to the oldest
event requested and present in the queue.

Outputs for Internal Use:

e Queued value 1-8...Name.V1-V8...actual queue of event numbers in the order received as status
inputs.

e Override timer...Name.Tmr...integer timer with range of 0-32767 seconds to time out and override an
event that would stall the sequencer by never reverting to false state.

e Image of inputs...Name.Img...integer packed image of input statuses to detect new events.

Limitations: None

Expected Applications:
Use to control multiple events that must be processed in the order received.

105

Software Modules

EventLogger

The EventLogger Module specifies up to 10 event statuses, each of which can trigger a log entry
along with an associated information string and optional floating point value. Each event is logged with
time tag, event string, optional value, ON/OFF state and index. Index, for use by DNP3, is the sum of the
base index and the event # (1-10). Also, for DNP3, if no analog value specified then the status will be
reported, otherwise, the analog value will be reported in DNP3 messages. The analog report code specifies,
for R9 format log dumping, the handling of analog values:
0=no analog report, 1=report as 4-byte float, 2, 3=spares, 4=mult by 10,000, 5=mult by 1,000, 6=mult by
100, 7=mult by 10, 8=mult by 1, 9=mult by 0.1, 10=mult by 0.01, 11=mult by 0.001, 12=mult by 0.0001,
13=mult by 0.00001, 14,15=spares. States 4 thru 13 designate that the value be multiplied by the specified
multiplier then be sent as a 2 byte signed integer.

Example specifying string: Tank level=@@.@@ feet, high alarm {ON/NORMAL} would result in the
following logged message: "07/14/07 19:45:05 Tank level=19.26 feet, high alarm ON". Mode 0: log all
ON events; mode 1: log all ON/OFFevents. The 'Which logger to use' entry must specify the '.Log' output
of an EventLogSetup module. Multiple EventLogger modules (this module) can reference the same
EventLogSetup module. Each event occupies 64 bytes of EEPROM. The Event X string entries can have a
maximum length of 50 bytes. Max string length for display on the local LCD is 16 bytes.

You may have as many event loggers as you need. Each event logger must point to an event log
as described below. The event log is established by an EventLogSetup module, which sets aside space for
the logged events. See EventLogSetup below. You may have multiple EventLogger modules sending
events to the same EventLogSetup module. You may also have multiple EventLogSetup modules, with
each establishing independent event logs. For example, you could have one event log for alarms, and
another for pump switching activity.

Specifying Which Logger to Use and Specifying Mode

The first input property of the EventLogger, titled “which logger to use”, must point to an event
log as established by an EventLogSetup module. You establish this connection by simply dragging into
the first property the EventLogSetup module’s “.Log” output from the integer data base. For example, if
you have set up an EventLogSetup module with the name “AlarmList”, then all you have to do is drag
from the integer database the name “AlarmList.Log”. This is actually a pointer to the beginning of the
event log.

The second EventLogger input property specifies whether the logger is to log turn-on events only,
or both turn-on and turn-off events. Leaving the input blank or setting it to zero will cause the module to
log an event whenever a status turns on. Setting the input to one causes the module to log both on and off
events.

Specifying Statuses and Messages

For each status you want to log, you must set up three properties: 1) you must drag in the status
from the status data base; 2) you must supply a corresponding message or string to be logged; and 3) you
may optionally supply a value to be logged as part of the message. When a status changes state, the logged
message will consist of a time and date string, a user entered string identifying the point with the change of
state, an optional analog value, and an ON or OFF indication. An example of the logged message format is
the following:

10/27/1999 14:29:05 Richfield tank level=12.34 feet, high alarm ON.

The time and date string is supplied by the system and its format is fixed as MM/DD/YYYY HH:MM:SS.
The user-entered string is entered in the same format as that of RUG9 display lines, with the exception of
the trailing ON/OFF indication. To produce the above logged message, you would enter the message string
as: “Richfield tank level=@@. @@ feet, high alarm . The optional “@@.@@" field specifies the
placement and format of an optional floating point value to be included in the message. With the message
as in the example above, the system will append either ON or OFF indicating the new status state. If you

106

Software Modules

append a true/false string field in braces to the end of the string, the logger will use your choices in place of
“ON/OFF”. For example, if you append “{FAIL/NORMAL}” to the message, then the system will use
“FAIL” when the status turns on and “NORMAL” when the status turns off. The above message string
becomes:

“Richfield tank level=@@.@@ feet, high alarm {FAIL/NORMAL}*.
You simply specify your ON and OFF choices separated with a forward slash “/”” character.
Inputs That Must be Constants: None

Inputs That Must be Pointers:
e Which logger to use...integer input must point to an event logger’s Name.Log output in the integer
database.

Other Inputs:

e Mode (0=On, 1=0On/Off)...integer input specifies operating mode: 0=log ON events only, 1=log both
ON and OFF events

e Enable...status that when true enables logging; when false inhibits logging.

e Base index...integer offset that is added to the input event number (1-10) and saved in the log for use
by DNP3 and RUG9 format log dumping.

e DNP3 class...integer specifying inclusion in one of three DNP3 classes.

e Analog report code (0-15)...integer that specifies how the analog value is to be reported in RUG9-
formatted reports: 0=no analog report, 1=report as 4-byte float, 2, 3=spares, 4=mult by 10,000, 5=mult
by 1,000, 6=mult by 100, 7=mult by 10, 8=mult by 1, 9=mult by 0.1, 10=mult by 0.01, 11=mult by
0.001, 12=mult by 0.0001, 13=mult by 0.00001, 14,15=spares. States 4 thru 13 designate that the
value be multiplied by the specified multiplier then be sent as a 2 byte signed integer.

e Event 1-10 status input...status input whose state change is to be logged. Drag these inputs from the
status database.

e Event 1-10 string...string you type in that you want presented whenever the event log is to indicate
that the above status changed state.

e Event 1-10 value...floating point or integer value to be imbedded in your message whenever the above
status changes state and logs an event. For example, you might include tank level when you log a high
tank alarm event.

Primary Outputs: None

Outputs for Internal Use:
e Image...Name.Img...image of input statuses used to detect when they change states.

Limitations: None
Expected Applications:

The EventLogger feeds events to event logs for later observation of status activity. Use to log alarms,
pump switching activity, intrusions, communication activity, etc.

107

Software Modules

EventLogSetup

The EventLogSetup module sets up event log space. Each event uses 64 bytes of EEPROM
including time tag, up to 50 byte string, analog value and ON/OFF flag. Number of events to log sets the
database size, maximum is 32767 events. When the log is full, each new event overwrites oldest event.
Each instance of this module creates a separate event log. Trigger to erase log will erase only this log. Use
one or more EventLogger modules to specify statuses to trigger each log entry. Trigger to dump the log to
port will send the entire log to the designated serial port starting with the newest log entry and continuing
until all entries have been sent. For presentation to the local LCD, set LCD string # bytes to 18 and drag
the Top and Bottom string outputs from the string database to a display designated for the LCD. Starting
page number should be left blank...it will be filled in by the compiler. The logger ID number (0-255)
identifies this logger when a request to perform a binary dump to the TLM channel occurs. Only the logger
whose ID number is referenced in the poll will respond.

Inputs That Must be Constants:
e Number events to log...integer that establishes how many events this log is to hold.

e LCD string # bytes...integer that sets output string length...should be 18 for presentation to the local
LCD

Other Inputs:

e Trigger erase log...trigger status input that, when true, will erase the log.

e Trigger dump log to port...trigger status input that will cause the module to dump the entire log to the
port specified below.

e Port to dump to (1 or 2)...integer input that specifies to which port on a board the module is to send the
log when triggered to dump the log.

e Starting page number...leave blank...compiler will fill in

e Logger ID number...integer in range of 0-255 that identifies this logger in binary dump using R9
protocol.

Primary Outputs:

e Logarray...Name.Log...Integer output pointing to logged data. This output is the one that must be
referenced by the EventLogger modules.

e Count of events logged...Name.Count...number of events presently in log.

e Top line to LCD...Name.Top...string with time tag to be sent to first line of local LCD if local events
are to be shown.

e Bottom line of LCD...Name.Bottom...string with message identifying the specific event being
presented.

Outputs for Internal Use:
e Start index...Name.StartIndex...integer index of oldest event in log.

e End Index...Name.EndIndex...integer index of next event to write in log.

e Dump index...Name.Idx...integer count of number of events that have been dumped.

e LCD index...Name.Lcdldx...integer index of event being shown on LCD.

e Sample count for TLM...Name.CntTLM...integer count of samples sent to TLM channel
Limitations:

e Maximum 32767 logged events per log.

Expected Applications:
Used to establish and supervise operation of each event log.

108

Software Modules

FlipFlop Module

The FlipFlop module provides a two state latch that can be set, cleared, or clocked. It provides
the same functionality as a D-type logic flip flop. The set and clear inputs can be used to unconditionally
set the flip flop state to 1 or O respectively. The clock input is used in conjunction with the D input. When
the clock input transitions from 0 to 1, the state present on the D input will be transferred to the flip flop’s
output and held. The FlipFlop module provides both true (.Q) and inverted (.Qbar) outputs. Aside from
the obvious latching function, the flip flop can be used to toggle between off and on states. For example,
the flip flop can be used as an alternator simply by dragging its Qbar output into its D input. Then, each
time its clock input is triggered, the flip flop will change state.

Inputs That Must be Constants: None

Other Inputs:

e Data input D...status input that will be latched by the flip flop each time the clock input is triggered.

e Clock input...status input that will cause the data input state to be latched and sent to the Q output
whenever the clock input transitions from 0 to 1.

e Clear input (sets Q=0)...status input that when 1 causes the Q output to go to zero.

e Set input (sets Q=1)...status input that when 1 causes the Q output to go to one.

Primary Outputs:
e Output Q...Name.Q...status output that reflects the flip flop’s latch state
e Inverted output...Name.Qbar...status output that is the inverse of the Q output

Outputs for Internal Use:
e Old clock input...Name.Old...image of last clock input to detect rising edges

Limitations: None

Expected Applications:
Use to latch statuses and to provide a toggle (alternating) function.

FlipFlopRS Module

The FlipFlopRS module provides a two state latch that can be set, or cleared. The set and clear
inputs can be used to unconditionally set the flip flop state to 1 or 0 respectively. The dominance input sets
the flip flop’s state in the case that both set and clear inputs are true simultaneously. The FlipFlop module
provides both true (.Q) and inverted (.Qbar) outputs.

Inputs That Must be Constants: None

Other Inputs:

e Setinput S (sets Q=1)...status input that when 1 causes the Q output to go to one.

e Reset input R (sets Q=0)...status input that when 1 causes the Q output to go to zero.
e Dominance input...status that determines output if both set and clear inputs are true.

Primary Outputs:
e OQutput Q...Name.Q...status output that reflects the flip flop’s latch state

e Inverted output...Name.Qbar...status output that is the inverse of the Q output

Outputs for Internal Use: None

109

Software Modules

Limitations: None

Expected Applications:
Use to latch statuses.

HOA

The HOA module provides the functionality of a hardware hand/off/auto switch with a lockout
function. When the AUTO input is ON, the HOA allows the CALL input to be passed to the CALL output.
If the AUTO input is OFF, then the HAND/OFF input controls the output. In that case, HAND/OFF=0
turns the output off; HAND/OFF=1 turns the output on. If LOCKOUT=1, then the output will be kept off
independently of the AUTO or HAND/OFF inputs. Use this module following the LeadLag sequencer to
give control of individual outputs. Generally, the hand off and auto inputs would come from a telemetry
receive array to give operators at the master site direct control of individual pumps.

Inputs That Must be Constants: None

Other Inputs:

e Call input...status input that will be passed to the call output when the auto input is on and the lockout
input is off.

e Hand/Off input...status input that will control the output if the auto input is off and the lockout input is
off. In that case, O=off, 1=on.

e Auto input...status input that, when on and lockout is off, enables the call input to be passed to the call
output. When auto is off and lockout is off, then the hand/off input controls the output.

e Lockout input...status input that when on will turn off the output independently of any other input.

Primary Outputs:
e Call output...Name.Call...status output generally routed to a relay to control a pump or other
equipment.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use after a pump controller or LeadLag sequencer to give a way to intercept pump calls and enable manual
control.

HOA2

The HOA2 module provides the functionality of a hardware hand/off/auto switch with a lockout
function. It’s different from the HOA module above in that its HOA state is derived from a single integer
rather than from a pair of statuses. A single numeric value, such as a setpoint or telemetry word, can
control the position of the switch. When the lockout input is off, the state input controls the output as
follows:

e State=0 (off): output is off
e State=1 (hand): output is on
e State=2 (auto): call input is passed to call output

110

Software Modules

If LOCKOUT=1, then the output will be kept off independently of the state or call inputs. Use this module
following the LeadLag sequencer to give control of individual outputs. Generally, the state input would
come from a telemetry receive array to give operators at the master site direct control of individual pumps.

Inputs That Must be Constants: None

Other Inputs:

e (Call input...status input that will be passed to the call output when the auto input is on and the lockout
input is off.

e State input...integer input: 0=off, 1=hand, 2=auto

e Lockout input...status input that when on will turn off the output independently of any other input.

Primary Outputs:
e Call output...Name.Call...status output generally routed to a relay to control a pump or other
equipment.

Outputs for Internal Use: None
Limitations: None
Expected Applications:

Use after a pump controller or LeadLag sequencer in order to intercept pump calls and enable manual
control.

IndexedValueSave

When triggered, the IndexValueSave module will save the input value in the particular output
designated by the index input. The index offset will be added to the index to determine the cell to save. If
the sum of index + index offset is outside the range of 0 to 9, then no save will occur.

Inputs That Must be Constants: None

Other Inputs:
e Trigger to force save...status input that when true causes the input value to be saved in one of the
outputs.

e Value to save...floating point value to be saved to an output when trigger is true.
e Index...integer that when added to the index offset specifies to which output to save.
e Index offset...integer that when added to the index specifies to which output to save.

Primary Outputs:

e Output0-9...Name.Out0-9.. .Floating point outputs that will hold input values.
Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use to store values such as totalizations at particular times.

111

Software Modules

Intrusion

The Intrusion module is used to implement timed security to detect unauthorized entry to a
customer’s site. It typically is used like this: a door switch is wired to a digital input whose output is
routed to the intrusion status input of this module. Also, an acknowledgement status or trigger is routed to
the ack status input of this module. When the door opens, the Intrusion module will begin timing. If the
Ack status input becomes true before the timer times out then no alarm is generated. However, if the Ack
status input is not true before the timer times out, then an alarm is declared. The time out is determined by
the Ack delay setpoint. A typical value is 60 seconds. The alarm will be asserted until the auto reset delay
has expired, at which time the alarm will be turned off. A typical value for the auto reset delay is 300
seconds. It needs to be long enough to inform by telemetry or audible alarm of the intrusion. The reset
alarm status input true will remove the alarm. Finally, if the hold off status input is true, a timer will start
for the period of the holdoff delay to disable the intrusion alarm for the holdoff period. This is used to
disable the alarm while authorized personnel perform maintenance, etc.

Inputs That Must be Constants: None

Other Inputs:

Intrusion status input...status input that when true starts an alarm cycle if not acknowledged.
Ack status input...status input that must be asserted before the ack delay time expires.

Hold off status input...status input that disables the alarm for the holdoff period.

Ack delay setpoint sec...integer delay in seconds before intrusion declared if not acknowledged.
Auto reset delay setpoint sec...integer delay in seconds to clear alarm after assertion

Hold off delay sec...integer delay in seconds to disable alarm for maintenance

Reset alarm status input...status input to silence alarm when true

Primary Outputs:
e Alarm output...Name.Alrm...status output that will be true if intruder detected.

Outputs for Internal Use:

e Sequencer state...Name.Seq...integer output for the internal sequencer
e State timer...Name.Tmr...integer timer used to time functions

e Old intrusion status...Name.Old...copy of last intrusion status

Limitations: None

Expected Applications:
Use to provide standard intrusion sequencing for detecting intruders.

LatchFloat

The LatchFloat module is used to latch or capture a floating point value when a trigger occurs.
The value would be held until the next trigger event. This could be used, for example, to capture a totalizer
value at a particular time such as midnight, for later transmission to a master site. Since the trigger input is
really a level triggered function, if the trigger input is held high, then the floating point input would be
continuously passed to the output until the trigger input goes false.

Inputs That Must be Constants: None

112

Software Modules

Other Inputs:
e Trigger...When true, causes the floating point input to be passed to the output. When false, leaves the
output unchanged.

e Input to capture...Floating point input to be captured when the trigger input is true.

Primary Outputs:

e Latched value...Name.Latch...floating point output equal to the last input value present while the
trigger input was true.

e Latch done...Name.Trg...status trigger output indicating that a value has been latched. Used to clear
an input totalizer after its value is captured or to trigger some other function that needs to be
accomplished after the value is latched.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to capture an analog value when a particular event occurs, such as trigger on time or alarm.

Latchint

The LatchInt module is used to latch or capture an integer value when a trigger occurs. The value
would be held until the next trigger event. This could be used, for example, to capture a totalizer counter
value at a particular time, such as midnight for later transmission to a master site. Since the trigger input is
really a level triggered function, if the trigger input is held high, then the floating point input would be
continuously passed to the output until the trigger input goes false.

Inputs That Must be Constants: None

Other Inputs:
e Trigger...When true, causes the integer input to be passed to the output. When false, leaves the output
unchanged.

e Input to capture...integer input to be captured when the trigger input is true.

Primary Outputs:

e Latched value...Name.Latch...integer output equal to the last input value present while the trigger
input was true.

e Latch done...Name.Trg...status trigger output indicating that a value has been latched. Used to clear
an input totalizer after its value is captured.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to capture a counter value when a particular event occurs, such as trigger on time or alarm.

113

Software Modules

LatchOnBitChange

This module monitors up to 16 status inputs and provides both a steady latched output and a
trigger output when a change is detected in any one of the inputs. The module’s steady output is reset
whenever a true is present on the reset input. The module’s mode input is used to select what types of
changes are to be detected: 0=both on and off transitions, 1=off to on transitions, 2=on to off transitions.
Use this module to trigger actions when changes in statuses occur, such as in quiescent RTU’s that must
transmit all changes.

Inputs That Must be Constants: None

Other Inputs:

e Reset input...status input that turns latched output off, preparing for the next event to latch

e Mode (0-2)...integer input that specifies: O=trigger on any change, 1= trigger on off to on transitions,
2=trigger on off to on transitions.

e Input #1-#16...status inputs whose state changes are to be detected. Blank inputs are ignored.

Primary Outputs:
e Had change output...Name.Chg...status output latched on when a change is detected in any of 16
inputs.

e Trigger on change...Name.Trg...trigger status that turns on when a change is detected in any of 16
inputs. Goes off automatically on next scan.

Outputs for Internal Use: None
e Image...Name.Img...integer copy of last set of status inputs.

Limitations: None

Expected Applications:
Use to detect any change in one or more of 16 status inputs for quiescent systems to transmit on change.

LatchString

The LatchString module is used to latch or capture a string when a trigger occurs. The string
would be held until the next trigger event. This could be used, for example, to capture a string at a
particular time such as when a telemetry reception occurs, to show an operator when the last reception
occurred. Since the trigger input is really a level triggered function, if the trigger input is held high, then
the floating point input would be continuously passed to the output until the trigger input goes false.

Inputs That Must be Constants:
e Output string max chars...integer to specify the largest string to be captured. Tells the compiler how
much RAM to allocate.

Other Inputs:
e Trigger...when true, causes the string input to be passed to the output. When false, leaves the output
unchanged.

e String to capture...string input to be captured when the trigger input is true.

Primary Outputs:
e Latched string...Name.Latch...string output equal to the last input value present while the trigger input
was true.

e Latch done...Name.Trg...status trigger output indicating that a value has been latched.

114

Software Modules

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to capture a string when a particular event occurs, such as trigger on time, pump call, or alarm.

LeadLagSeq4

The LeadLagSeq4 module performs lead pump rotation of up to 4 pumps. It accepts up to 4 input
pump calls, usually from pump up or pump down control modules. It also accepts up to 4 pump lockout
statuses. It issues call outputs based upon the number of inputs called beginning with the designated lead
pump. It will not call or switch off an output unless its call/backspin delay timer has timed out. The timer
is started any time the module calls or turns off an output. The module’s outputs can be connected directly
to relay output modules; or they can be connected to HOA modules if HOA type interception is required
between the sequencer and the actual output relays. If the ‘Lead’ input is specified, the pump designated to
be lead will be called first and turned off last. If no lead pump is specified, then the module will determine
the lead pump by rotating the next pump into the lead position each time a pump is called after all have
been turned off. This means that if the condition never exists that all pump calls are off, the lead pump will
never rotate. Note that the LeadLag sequencer determines how many pumps to call based on how many
inputs have been turned on...it doesn’t care which ones are on or in what order they turned on. Also, it
determines how many pumps are in the lead/lag rotation by how many inputs are specified by you.

Inputs That Must be Constants: None

Other Inputs:

e Pump A-D call...status inputs from pump up or pump down controllers indicating the need to call one
or more pumps.

e Pump 1-4 lockout...status inputs that will cause the corresponding output to be skipped in the calling
rotation. Blank or zero enables pump, non-zero disables pump output.

e Lead pump designator...integer input specifying which pump is to be called first and shut off last. If
lead designator is missing or set outside the range of number of pump inputs specified causes module
to invoke lead pump rotation.

e Call/backspin delay, sec...floating point call/backspin delay. Sets time that must elapse after any
output switching before another output will be allowed to switch on or off.

Primary Outputs:
e Pump 1-4 call...Name.P1...Name.P4.. status outputs used to call output relays.

Outputs for Internal Use:
e Delay timer...Name.Tmr...timer to delay on/off switching.
e Present lead designator...Name.Lead...integer register to hold present lead pump designator.

Limitations: None
Expected Applications:

Use this module in combination with other modules to implement multi-pump controls with lead lag
sequencing, lead pump rotation, and backspin delay.

115

Software Modules

LookupSwitch

The LookupSwitch module enables you to use a control index to select from one of 8
inputs/constants to be sent to its output. If the inputs are taken from a database, then the module constitutes
a 8 channel multiplexer/selector switch. If the inputs are constants, then the module constitutes a table
lookup. You can mix numeric entries from the databases with constants in the input set. If the control
index is out of the range of 0 through 7, then the module outputs a value of 0.0.

Inputs That Must be Constants: None

Other Inputs:

e Control (0-7)...integer input to select one of the 8 analog inputs/table entries.

e Entry 0-7...floating point, integer or status database entries, or constants to be selected by the control
index.

Primary Outputs:
e Output...Name.Look...floating point output selected from the 8 entry inputs by the control index.

Outputs for Internal Use: None

Limitations:
Control index out of range of 0-7 returns value of 0.0.

Expected Applications:
Use this module to perform channel selection and/or table lookups.

MismatchLatch

The alarm MismatchLatch module compares two statuses and turns on its output if the two
statuses fail to match each other after a designated time delay. This is typically used to detect, for example,
pump failure. If a pump is called and its run indication does not turn on within a certain time, then an
alarm is issued. Similarly, if the pump turns off and the run indication does not indicate that the pump
turned off, then an alarm is issued. In another application, if a pump is called and a flow switch does not
indicate that flow exists after a time delay, then the pump is declared failed by the mismatch module. If the
alarm condition is removed, then the alarm output will become false, but the latched alarm output will not
return false until the reset latch input is true.

Inputs That Must be Constants: None

Other Inputs:

e Status input #1...status that must match status input #2...typically a pump call status.

o Status input #2...status that must match status input #1...typically a pump running status.

e Alarm delay, sec...integer period in seconds during which the two status must mismatch to declare an
alarm. If the delay is zero, then the alarm is disabled.

e Alarm enable...status to enable/disable alarm...0=disable, 1=enable

e Reset latch.. . status that will return the latched alarm to false when reset input is true.

116

Software Modules

Primary Outputs:

e Alarm output...Name.Alrm...status indicating: O=input statuses match, 1=statuses have mismatched
for the dalay period.

e Latched alarm output...Name.LatchAlrm...status indicating that an alarm has occurred since the last
reset latch event.

Outputs for Internal Use:
e Delay timer...Name.Timer...integer countdown delay timer counting seconds

Limitations: None

Expected Applications:
Use to detect pump failure or other control element failure. Latched output is used to generate pump
lockout status.

OffDelay

The OffDelay module will produce a TRUE output whenever its main input is TRUE and will
only produce a FALSE output if the input goes FALSE and stays FALSE for a specific delay time. When
input becomes TRUE, output Q immediately becomes TRUE. Output Q will become FALSE delay
seconds after input becomes FALSE and stays FALSE. Reset clears timer and output Q.

Inputs That Must be Constants: None

Other Inputs:

e Input status...status input that determines output state.

e Reset...status input that will immediately force the output false and clear timer.

e Time delay sec...integer number of seconds that the input must stay false before the output will be
allowed to go false.

Primary Outputs:

e Output Q...Name.Q...status output that tracks input subject to delay.

e Inverted output...Name.QBar...status output inverse of Q output

Outputs for Internal Use: None
e Timer...Name.Tmr...integer timer for delay

Limitations: None

Expected Applications:
Use to eliminate intermittent OFF states from statuses.

ONDelay

The OnDelay module will produce a TRUE output whenever its main input is TRUE and stays
TRUE for a specific delay time. When input TRUE, timer starts. If input stays TRUE, output Q will
become TRUE after delay seconds. Output Q will become FALSE immediately after input becomes
FALSE. Reset clears timer and Q

117

Software Modules

Inputs That Must be Constants: None

Other Inputs:

e Input status...status input that determines output state.

e Reset...status input that will immediately force the output false and clear timer.

e Time delay sec...integer number of seconds that the input must stay true before the output will be
allowed to go true.

Primary Outputs:

e Output Q...Name.Q...status output that tracks input subject to delay.

e Inverted output...Name.QBar...status output inverse of Q output

Outputs for Internal Use: None
e Timer...Name.Tmr...integer timer for delay

Limitations: None

Expected Applications:
Use to eliminate intermittent ON states from statuses.

ORGate

The OR gate will accept up to 8 status inputs and issue a single output that is the logical OR of the
inputs. That is, if any input is on, then the output is on. Only if all inputs are off will the output be off.
Any inputs that you do not specify will be regarded as off. Both normal polarity (OR) and inverted polarity
(NOR) outputs are provided.

Inputs That Must be Constants: None

Other Inputs:
e Input #1-8...status inputs to be ORed together .

Primary Outputs:

e OR output...Name.ORout...status output that is the OR of all inputs.

¢ OR inverted...Name.ORbar...status output that is the NOR of all inputs.
Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use for controls to provide an output if any one or more of the inputs is on.

ORGatelLatch

The OR gate latch module will accept up to 8 status inputs and will turn on its output if any input
is turned on. The output will stay on until the reset input is true. Any inputs that you do not specify will be
regarded as off. The ORbar output is the logical inverse of the latched OR output.

Inputs That Must be Constants: None

118

Software Modules

Other Inputs:
e Reset input...status input that, when true will cause the output to go to zero.
e Input #1-8...status inputs to be ORed together. If any is on, the output will be on until reset.

Primary Outputs:
¢ OR output...Name.ORout...status latched output.
e OR inverted...Name.ORbar...inverse of the latched OR output.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use for controls to provide an output if any one or more of the inputs is on or has been on since the last
reset.

PID

The RUG3 PID module implements a standard independent gain proportional/integral/differential
(PID) linear control algorithm. It implements the following on each scan:

Output=Kp*E+Ki*[(E)dt+Kd*d(PV)/dt +Bias (derivative of PV type)
Or
Output=Kp*E+Ki*[(E)dt+Kd*d(PE)/dt +Bias (derivative of error type)

Where E=SP-PV, the error

SP=setpoint

PV=process variable

Kp=proportional gain

Ki=integral gain

Kd=derivative gain

Bias=output bias to force operation in linear range

It is used to provide linear control of a valve, heater, motor speed or other proportionally controllable
device to achieve a desired operating condition. Basically, the PID algorithm is used to sense the
difference between the process variable (tank level, flow rate, pressure, temperature, etc.) that you wish to
control, and the setpoint to which you want to control the process variable; and then to adjust the output to
make the process variable match the setpoint as closely as possible. You accomplish this by setting the
proportional gain, integral gain and derivative gain to give the accuracy and response time needed in your
application. In most water and wastewater applications, you will set the derivative gain to zero and make
the remaining gains setpoints so they can be adjusted in the field to tune the algorithm. Rule of thumb: set
proportional gain to a value equal to 1 to 3 times the ratio of output span divided by input span. Set integral
gain to 10% of proportional gain. Set integrator error accumulator limit to 10 times output span. Set output
bias to 50% of output span.

Proportional Control

If you set proportional gain nonzero and set the other gains to zero, you will get proportional
control, which is

Output=Kp*(SP-PV) + Bias.

119

Software Modules

Let’s say you that wish to control a water pressure with a variable speed drive using a PID, and that you try
proportional only control. A good rule of thumb is to start with proportional gain set between 1.0 and 5.0,
depending on how fast you wish the algorithm to control the output; and to set the bias to 50% of the
required output span. Assume the output range is 0 to 100%, the setpoint is 60 PSI, we set the proportional
gain to 2.0, and we set the bias to 50% of output range. If the measured pressure is 50 PSI, then the error is
SP-PV=10, so the result is

Output=2.0*(60-50)+50=70.

Therefore, the controller is sending 70% speed command to the VFD. If the VFD cannot maintain 60 PSI
at 70% speed, we will always have a residual error in pressure. This is a characteristic of proportional-only
control...we will generally not be able to get the process to match our desired setpoint. One possible
solution is to increase proportional gain, but we increase the danger of oscillation. Another solution is to
engage the integral term in our PID equation. See below.

Proportional/Integral Control

The integral term in the PID equation is used to integrate the error as a function of time to
eliminate the offset. In other words, the longer the error exists, the larger the correction the integral term
makes to the output to bring the process variable closer to the setpoint. The algorithm does this by
summing the error with each scan and using that sum times the integral gain to adjust the output. The main
question is what should be the integral gain; and how large should the error sum be allowed to grow. A
good starting rule of thumb is to set the integral gain to 10% of the proportional gain, and set the integrator
error limit to 10 times the output span. Then, depending on the results, adjust the gains in small increments
until stable control is achieved.

Proportional/Integral/Derivative Control

Derivative control is used to speed response to changes in process variable. It’s use is beyond the
scope of this manual.

Speed Control of This Module

Note that this module executes on each program scan when enabled. If you leave the enable input
constantly on (i.e., set it to 1), the module will probably saturate its output all the way high or low too soon
for practical use unless you use gains about 1/100™ of normal. Instead, you should consider installing the
Setup.SecTrg once per second trigger in the enable input. This will enable the calculation only once per
second, synchronizing the calculation to an established timebase, thereby making its response time
independent of the program’s execution speed.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status that when blank or true enables the algorithm to calculate; 0 disables the calculation.
Consider using System.SecTrg here.

e Process variable PV...floating point variable to be controlled as nearly as possible to the setpoint
value. This is your pressure, flow rate, tank level, temperature, etc. that you wish to control.

e Setpoint SP...floating point value to which you wish the process variable to be controlled. This is
usually a user adjustable setpoint or received telemetry value, but could also be the output of another
module.

e Proportional gain P...floating point value that sets the gain of the proportional term of the PID
equation.

o Integral gain 1/sec I...floating point value that sets the gain of the integration term of the PID equation.
Zero value disables integration action.

120

Software Modules

e Derivative gain sec D...floating point value that sets the gain of the derivative term of the PID
equation. Zero value disables the derivative action.

e Action O=rev, 1=fwd...status flag to select forward or reverse acting result. If action is set to forward
(1), then if the process variable is greater than the setpoint, the output will rise. If the action is set to
reverse (0), then if the process variable is greater than the setpoint, the output will fall.

e Deriv: 0=dPV/dt, 1=dE/dt.. .status input specifying whether the derivative term is to work from the
derivative of the process variable, or from the error.

e Output bias...floating point value that sets the output value that will result if there is no error and there
has been no accumulated error. Usually set to the middle of the normal output range.

e Output high limit...floating point value that sets the module’s maximum output value.

e OQOutput low limit...floating point value that sets the module’s minimum output value.

e Integrator error limit...floating point value that clamps the maximum absolute value the integrator’s
error accumulator can assume.

e Output deadband...floating point value by which the absolute value of the new result must exceed the
absolute value of the last result before the new result will become the output of the module.

e Trigger force output...status that when true forces the output value to force, below, to be jammed into
the module’s output

e QOutput value to force...floating point value to be forced into output when above trigger is true.

e Trigger clear integrator error...status that when true, clears the integrator error

Primary Outputs:
e Qutput...Name.Out...floating point output of the PID calculation. Use this value to control other
modules or send to an analog output module to control equipment.

Outputs for Internal Use:

e Last error/PV for derivative...Name.Dold...floating point register that holds last scan error or PV
value for use by derivative to calculate change from last scan.

e Integ error accumulator...Name.lerr...floating point error accumulator used by integrator.

Limitations: None

Expected Applications:
Use this module to implement tunable control of linear devices such as valves, motors, heaters, etc.

Poke

The poke module enables you to jam a value into any register or module output in the system
independently of other calculations or actions. This is commonly used to initialize accumulated values,
iterative results, or received telemetry values. For example, you might poke a value into a receive
telemetry register to simulate the reception of a value to examine actions take by modules that act upon that
value, or to assure that unknown register contents do not cause potentially damaging control actions.

Inputs That Must be Constants: None

Inputs That Must be Pointers:
e Where to poke...name dragged from a database where you wish the value to be sent.

Other Inputs:

e Trigger...status trigger that will cause the value to be poked into the designated register

e Value to poke...floating point, integer, status or constant, to be poked to the named destination when
triggered.

121

Software Modules

Primary Outputs: None
Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to jam a number into a register for test or to initialize a register to known value.

PokeMany

The PokeMany module enables you to jam up to 10 values into any registers or module outputs in
the system independently of other calculations or actions. This is commonly used to initialize accumulated
values, iterative results, or received telemetry values. All specified values would be poked simultaneously.
For example, you might poke a series of values into receive telemetry registers to simulate the reception of
values in order to examine actions take by modules that act upon those values, or to assure that unknown
register contents do not cause potentially damaging control actions.

Inputs That Must be Constants: None
Inputs That Must be Pointers:
e Where to poke 1-10...names dragged from a database where you wish the corresponding values to be

sent.

Other Inputs:

o Trigger...status trigger that will cause the values to be poked into the designated registers

e Value to poke 1-10...floating point, integer, status or constant, other than string, to be poked to the
named destinations when triggered.

Primary Outputs: None

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use to jam numbers into registers for test or to initialize registers to known values.

PulseGen

The PulseGen module, when triggered, will generate a variable length pulse on its output. A
trigger that occurs while the output is on will start a new delay and therefore, extend any pulse in progress.
Output status pulses on with each low to high transition of the trigger input. Pulse duration in seconds is
set by duration input with resolution of 1 sec. Range is 32767seconds. Pulse done trigger occurs for one
scan at end of main pulse.

Inputs That Must be Constants: None

122

Software Modules

Other Inputs:
e Trigger input...Status input that causes pulse generation on each low to high transition
e Duration sec...Floating point delay in seconds that sets the pulse duration

Primary Outputs:

e Pulse output...Name.Pulse...status output that will stay true for a duration after each input trigger
e Pulse output inverted...Name.PulseBar...status output inverse of pulse output

e Pulse done trigger...Name.Trg...status trigger output indicating end of variable length pulse

Outputs for Internal Use: None
e Old input...Name.Old...copy of trigger input
e Pulse timer...Name.Tmr...delay timer to time output pulses

Limitations: None

Expected Applications:
Use this module to pulse valves open/closed with variable pulse lengths.

PulseGenFast

The PulseGenFast module, when triggered, will generate a variable length pulse on its output with
finer resolution than the PulseGen module above. A trigger that occurs while the output is on will start a
new delay and therefore, extend any pulse in progress. Output status pulses on with each low to high
transition of the trigger input. Pulse duration in seconds is set by duration input with resolution of 0.1 sec.
Range is 3276.7seconds. Pulse done trigger occurs for one scan at end of main pulse.

Inputs That Must be Constants: None

Other Inputs:
e Trigger input...Status input that causes pulse generation on each low to high transition
e Duration sec...Floating point delay in seconds that sets the pulse duration

Primary Outputs:

e Pulse output...Name.Pulse...status output that will stay true for a duration after each input trigger
e Pulse output inverted...Name.PulseBar...status output inverse of pulse output

e Pulse done trigger...Name.Trg...status trigger output indicating end of variable length pulse

Outputs for Internal Use: None
e Time counter...Name.Count...counter to time output pulses

Limitations: None

Expected Applications:
Use this module to pulse valves open/closed with variable pulse lengths.

123

Software Modules

PumpDnCirl

The pump down controller will turn on its output whenever its input level exceeds its call setpoint
level. When the input level falls below the module’s off setpoint, the module will turn off its output. For
correct operation, the call setpoint must be above the off setpoint. This module can be used to control a
single pump or can be used in conjunction with one of the lead lag sequencers which will perform backspin
timing and lead lag sequencing.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result

o Input level...floating point level whose value is to be controlled by the module’s output. This would
normally be the level of a tank, such as a sewage sump, that must be pumped down whenever its level
exceeds a setpoint.

e Call setpoint...floating point setpoint above which the module will turn on its output.

e Off setpoint...floating point setpoint below which the module will turn off its output.

Primary Outputs:
e Call output...Name.Call...status output used to control a pump or used as the input to the lead lag
sequencer.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use this controller in pump down pump controls, such as in sewage lift station pumping.

PumpUpCitrl

The pump up controller will turn on its output whenever its input level is below its call setpoint
level. When the input level exceeds the module’s off setpoint, the module will turn off its output. For
correct operation, the call setpoint must be below the off setpoint. This module can be used to control a
single pump or can be used in conjunction with the lead lag sequencer which will perform backspin timing
and lead lag sequencing.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result

o Input level...floating point level whose value is to be controlled by the module’s output. This would
normally be the level of a tank that must be pumped up whenever its level falls below a setpoint.

e Call setpoint...floating point setpoint below which the module will turn on its output.

e Off setpoint...floating point setpoint above which the module will turn off its output.

Primary Outputs:
e Call output...Name.Call...status output used to control a pump or used as the input to the lead lag
sequencer.

124

Software Modules

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use this controller in pump up pump controls, such as in storage tank pumping.

PumpUpDn

The pump up/down controller can be used to control a single pump in either the pump up or pump
down mode. The up or down mode is set by a single input that can be a setpoint. The module includes call
and off delays to avoid switching the pump too frequently. By incorporating a single module that can
perform both pump up and pump down control, you can set up a unit whereby the operator can select the
operating mode using a setpoint without having to have two configuration files and associated program
loading for the two applications.

For pump up control: pump will be called when level falls below the call setpoint, and will be shut off if
the level exceeds the off setpoint. Off setpoint must be greater than the call setpoint.

For pump down control: pump will be called when the level exceeds the call setpoint, and will be shut off
if the level falls below the off setpoint. Call setpoint must be greater than the off setpoint.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result

e Level input...floating point tank or sump level whose value is compared with call and off setpoints to

determine whether to call the pump or turn it off.

Mode: O=pump up, 1 down...integer choice of: O=pump up, 1=pump down

Call setpoint...floating point level to cause pump to switch on.

Off setpoint...floating point level to cause pump to switch off.

Call steady delay sec...integer time in seconds that pump call condition must remain true before the

pump will be called.

e Off steady delay sec...integer time in seconds that pump off condition must remain true before the
pump will be turned off.

Primary Outputs:
e Call output...Name.Call...status output that turns on when the pump should be called; turns off when
the pump should be turned off.

Outputs for Internal Use: None
e Steady timer...Name.Tmr...integer timer to time call/off conditions to avoid too frequent switching.

Limitations: None
Expected Applications:

Use for all pump control applications to directly control pumps or to send pump calls to the lead lag
sequencer to control pumps in combinations.

125

Software Modules

RateofChange

The rate of change module compares an input value with the value it last stored to detect when the
change from one scan to the next has exceeded a user supplied rising rate setpoint; or has fallen below a
user supplied falling rate setpoint. The module makes its calculations when triggered, so, for this to work
in a practical application, the module should be triggered on a set time interval such as once per second, or
once per minute, etc. For example, to detect when a reservoir is rising at a rate exceeding one foot per
hour, you could trigger the module every 60 minutes and set the rising rate setpoint to 1.0. Alternatively,
you could trigger the module once per minute and set the rising rate setpoint to 0.0167 feet, the change a
one foot hourly rise would make in one minute.

Inputs That Must be Constants: None

Other Inputs:

e Trigger...status trigger input to cause the module to execute its calculation and save its results. This
should be a fixed time base trigger for practical use.

e Input value...floating point value whose rate of rise or fall is to be tested.

e Rising alarm rate SP...floating point setpoint whose value must be exceeded by the difference between
input level on successive scans to generate a high rising rate alarm.

e Falling alarm rate SP...floating point setpoint whose value must be exceeded in a negative direction by
the difference between input level on successive scans to generate a high falling rate alarm. This
setpoint must be negative for correct operation.

Primary Outputs:
e Change from last...Name.Change...floating point value of difference in input values between last two
scans.

e High rising rate alarm...Name.RiseAlrm...status that will be true if difference in input values between
last two scans exceeds rising alarm rate setpoint.

e High falling rate alarm...Name.FallAlrm...status that will be true if difference in input values between
last two scans is below falling alarm rate setpoint.

Outputs for Internal Use: None
e Old value...Name.Old...floating point value of level at last scan

Limitations: None

Expected Applications:
Use with fixed time base to detect rate of change of an analog value and generate high/low rate alarms.

ReadRTC

This module is used to capture the realtime clock/calendar and split its values out into individual
integers and strings. It reads the realtime clock/calendar each time it is triggered and latches the clock’s
values at that time. Therefore, it has two main uses: to capture the clock periodically, usually once per
second, for display; and to capture the clock when an event occurs for time stamping the event. The
module’s outputs remain at their current values until the next trigger.

Inputs That Must be Constants:

e Qutput string chars...integer that sets how much RAM the compiler must set aside for the string
outputs of the module. This should be set to 40 unless no string outputs are required. If set to zero, no
strings will be generated and RAM will be conserved.

126

Software Modules

Other Inputs:

e Trigger input...status trigger input that forces the module to read the RTC/calendar when true. If left
blank, the module will read the clock on each scan. For practical use, install the System.SecTrg here to
trigger RTC reading each second.

Primary Outputs:

Seconds...Name.Sec...integer output of the RTC seconds register. Range is 0 to 59.
Minutes...Name.Min...integer output of the RTC minutes register. Range is 0 to 59.
Hours...Name.Hr...integer output of the RTC hours register.

Day of week...Name.DayofWk...integer representing day of week: 1=Sun...7=Sat
Day...Name.Day...integer day of month. Range is 1 to 31

Month...Name.Mo...integer month of year. Range is 1 to 12

Year...Name.Yr...integer year. Range is 1950 to 2049

Time/date string...Name.Str...string of time and date of format SUN 11/03/1999 14:39:08
Time string...Name.Time...string of time of format 14:39:08

Date string...Name.Date...string of date of format 11/03/1999

Numeric RTC string...Name.NumStr...date/time string without day of week 11/30/2003 12:34:45

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to capture clock for time tagging and for splitting RTC into individual items.

SequencerT2

SequencerT?2 is a timed sequencer with a user defined time per state and four presets. When a
preset trigger is received, the sequencer will assume the corresponding preset state and restart the timer.
When the timer times out, the sequencer state will increment to the next state and restart the timer. If the
enable is missing or set to 1, the sequencer will continue to count uninhibited. If the enable is set to 0, the
sequencer state will not increment, but the timer will continue to count until it times out. Timer resolution
is 1.0 second. Timer range is 32767seconds. The sequencer state count range is -32768 to +32767. To
obtain a status for each state, you should use this sequencer with the SequenOut module, which provides
10 output statuses based on the state of the sequencer state. You may use as many SequenOut modules as
you need to implement as large a sequencer as necessary.

Inputs That Must be Constants: None

Other Inputs:

e Enable counting...status input: O=stop counting; 1 or blank=enable state counting

e Seconds per state...integer seconds between state transitions.

e Preset 1-4 triggers...status trigger inputs to force the state to a user defined state from which counting
will continue.

e Preset 1-4 state...integer value the state counter is to assume when the corresponding preset trigger is
received.

Primary Outputs:
e State...Name.State...integer value of the sequencer’s state counter.

Outputs for Internal Use: None
e Timer...Name.Tmr...integer time counter for state timing

127

Software Modules

Limitations: None

Expected Applications:
Use this sequencer for sequences that need a uniform time interval per state.

SeqTimedTrigger

The SeqTimedTrigger sequencer spends a user designated number of seconds in each state, then
advances to the next state. Preset triggers force the sequencer to either of two specified states. Enable true
enables time/state counting. Enable false halts time/state counting. Max state specifies the highest
sequencer state. Mode specifies the action to be taken when the state output equals the max state: O=stop,
1=roll back to state 1 and continue. Seconds in state inputs specify time to be spent in each state in tenths
of a second with a range of 32767 tenths of a second each. Trigger outputs are asserted on entry to each
state. Done trigger is asserted when state designated as max state is finished.

Inputs That Must be Constants: None

Other Inputs:

e Enable input...status input that will inhibit sequencing when zero, and will enable sequencing when
blank or set to 1.

e Preset trigger N...status triggers that when true send the sequencer to the state specified by the preset
N state inputs.

e Max state...integer that specifies the highest state that the sequencer counter can have.

e Mode 0,1...integer input that specifies action to be taken when sequencer hits its max count: O=stop,
1=roll back to state 1 and continue.

e Tenth sec in state 1 to 10...integer tenths of a second the sequencer is to dwell in the corresponding
state. Range is +3276.7 seconds. Resolution is 0.1second.

Primary Outputs:

e Sequencer count 1-10...Name.Count...integer count of sequencer state.

e State #1 to #10 trigger...Name.Trgl to Name.Trgl0... Trigger outputs that will be true for one scan
when the sequencer transitions to the corresponding state.

e Done trigger...Name.TrgDun...trigger output that will be asserted when the sequencer finishes with
the max state.

Outputs for Internal Use:
e Timer...Name.Tmr...integer time counter for state timing

Limitations: None
Expected Applications:

Use this sequencer for applications wherein you need a sequencer that needs a different time per state and a
trigger to signal entry to each state.

128

Software Modules

SequencerTimed

The timed sequencer is a 7 stage sequencer that provides a time delay for each state and can be
cascaded to give any length sequencer with a unique time per state. When reset, the sequencer assumes
state 1; and the timer is started with the time at which it is to stay in state 1. When the timer times out, the
sequencer advances to the next state and restarts the timer with the time setpoint for that state, and so forth.
This continues until the sequencer hits state 8, where it stays until reset. The enable input enables or
inhibits time counting but does not affect the outputs. To cascade these sequencers to obtain longer
sequencers, connect the state 8 output of a low order sequencer to the enable input of the next higher
sequencer.

Inputs That Must be Constants: None

Other Inputs:

e Reset input...status input that will reset the sequencer to state 1.

e Enable input...status input that will inhibit sequencing when zero, and will enable sequencing when
blank or set to 1.

e Seconds in state 1 to 7...integer seconds sequencer is to dwell in the corresponding state. Range is
+32767 seconds. Resolution is one second.

Primary Outputs:

e Sequencer count 1-8...Name.Count...integer count of sequencer state.

e State #1 to #8...Name.Seql to Name.Seq8...status output that will be true when the sequencer is in the
corresponding state.

Outputs for Internal Use:
e State timer...Name.Sec...integer time counter for state timing

Limitations: None

Expected Applications:
Use this sequencer for applications wherein you need a sequencer that may need a different time per state.

SequencerUpDn

SequencerUpDn is a sequencer that can count up or count down depending on which of two
triggers it receives. It has four presets. When a preset trigger is received, the sequencer will assume the
corresponding preset state. If the enable is missing or set to 1, the sequencer will continue to count
uninhibited. If the enable is set to 0, the sequencer state will not change when triggered. Presets work
independently of the enable. The sequencer state count range is -32768 to +32767. To obtain a status for
each state, you should use this sequencer with the SequenOut module, which provides 10 output statuses
based on the state of the sequencer state. You may use as many SequenOut modules as you need to
implement as large a sequencer as necessary.

Inputs That Must be Constants: None

Other Inputs:

e Enable counting...status input: O=stop counting; 1 or blank=enable state counting

e Count up trigger...status trigger that will cause the state counter to increment.

o Count down trigger...status trigger that will cause the state counter to decrement.

e Preset 1-4 triggers...status trigger inputs to force the state to a user defined state from which counting
will continue.

129

Software Modules

e Preset 1-4 state...integer value the state counter is to assume when the corresponding preset trigger is
received.

Primary Outputs:
e State...Name.State...integer value of the sequencer’s state counter.

Outputs for Internal Use: None
e Old count up...Name.OldUp...status image of last trigger input to detect rising edge.
e Old count down...Name.OldDn...status image of last trigger input to detect rising edge.

Limitations: None

Expected Applications:
Use this sequencer as a counter to detect the difference between counts of two pulse trains, or for general
purpose sequencing.

SequenOut

The SequenOut module is a state decoder and sequencer output expander. Use it to read a
sequencer’s state and provide one status output for each state. The offset input enables multiple modules to
be assigned to one sequencer to expand the sequencer’s outputs to any number necessary. When the state
minus the offset is in the range of 1 to 10, then one of the SequenOut outputs will turn on when the enable
input turns on. For example, if the offset is set to zero, then the outputs will turn on in response to states 1
to 10. If the offset is set to 10, then the outputs will respond to sequencer states 11 to 20, and so forth.
Therefore, to expand a sequencer’s outputs to, say 30, set one SequenOut’s offset to 0; set the next
SequenOut’s offset to 10; and set the last SequenOut’s offset to 20. If the module’s enable is false, then
its outputs will all be off.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input that enables the outputs to turn on.

e State...integer input state that determines which output is to turn on.

e Offset...integer input that is subtracted from the input state to determine which output is to turn on.

Primary Outputs:

e Qutput 1-10...Name.S1 to Name.S10...status outputs, one of which will be on if the enable is on and
the state-offset is in the range of 1 to 10.

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Used to expand any counter or sequencer to turn on a status corresponding to the counter state.

130

Software Modules

SetRTC

Use this module to set the realtime clock/calendar (RTC) from the program. The module provides
a separate trigger for each of the seven elements of the clock/calendar. When triggered, the value installed
takes effect immediately. Triggers can be issued simultaneously. This module is useful for setting the
RTC from telemetry to keep all clocks in a telemetry system in synchronism.

Inputs That Must be Constants: None

Other Inputs:

e Trigger to install seconds...status trigger that will install the seconds value in the RTC.

e Seconds value to install...integer value to preset seconds in RTC. Range is 0 to 59.

e Trigger to install minutes...status trigger that will install the minutes value in the RTC.

Minutes value to install...integer value to preset minutes in RTC. Range is 0 to 59.

Trigger to install hours...status trigger that will install the hours value in the RTC.

Hours value to install...integer value to preset hours in RTC. Range is 0 to 23.

Trigger to install day of month...status trigger that will install the day of month value in the RTC.
Day of month value to install...integer value to preset day of month in RTC. Rangeis 1 to 31.
Trigger to install month...status trigger that will install the month value in the RTC.

Month value to install...integer value to preset month in RTC. Rangeis 1 to 12.

Trigger to install day of week...status trigger that will install the day of week value in the RTC.
Day of week value to install...integer value to preset day of week in RTC. Range is 1 (Sun) to 7 (Sat).
Trigger to install year...status trigger that will install the year value in the RTC.

Year value to install...integer value to preset year in RTC. Range is 0 to 99.

Primary Outputs: None
Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to set RTC remotely.

SnapShotCount

When triggered, the SnapShotCount module reads the background counter on the designated DI
channel and calculates counts since last trigger. The module does not alter the counter contents. Use this
module to read pulse counts at desired time intervals without danger of losing counts by clearing the
counter after reading. When using this module, you must have a DICounter or ShaftEncoder assigned to
the channel and you must not clear or preset the counter. Range is 0-32767..

Inputs That Must be Constants: None

Other Inputs:

e Trigger read count...trigger status that, when true, causes the module to read the designated counter
and subtract the previous count from it to produce the output count.

e DI channel (1-8)...integer designates which digital input channel whose counter is to be read.

e Preset value...integer that will be installed as the count when the preset trigger is true.

Primary Outputs:
e Count since last trigger...Name.Cnt...integer difference between last sample and present count.

131

Software Modules

e Trigger have new cnt...Name.Trg...trigger status that will be true the next scan after a new sample has
been read.

Outputs for Internal Use:
e Old count...Name.Old...copy of last count read from background counter

Limitations:
Count range is 0 to +32767.

Expected Applications:
Use to capture a count at a specified time interval or between events without affecting the DI counter.

StringSwitch

The string switch uses an index to select one of up to 11 string inputs to be sent to the output. It
transfers the selected string when it detects a change in its input index. This module is mostly used to
convert a number (the index) to a string for display on the LCD. For example, if the state of a
hand/off/auto switch is represented by an integer with a value of O=off, 1=hand and 2=auto, it is more
informative to an operator to see a word such as “auto” than to see the value “2”. To accomplish this, drag
the index into the StringSwitch’s input index entry; and then enter the strings: “OFF” into the string zero
cell; “ON* into the string 1 cell; and “AUTO” into the string 2 cell. Then drag the output of the string
switch into the display’s variable list where the HOA state is being displayed.

Inputs That Must be Constants:
e Number bytes/string...integer identifying space to be set up for this module’s output. This value
should be greater than the number of characters in the longest input’s string.

Other Inputs:

e Input index (string to select)...integer in the range of 0 to 10 that selects a string from the input string
list.

e String 0 to 10...string inputs from which one is to be chosen by the index to become the output of this
module.

Primary Outputs:

e QOutput string...Name.String...string output selected from the string input list by the index.

Outputs for Internal Use:
e Old index...Name.Old...copy of previous index to detect changes.

Limitations: None

Expected Applications:
Used to provide a more pleasing display of alarm conditions, sequencer states, etc. than simple numbers.

132

Software Modules

StringSwitchByBits

The StringSwitchByBits module is similar to the string switch above. It uses an index calculated
from the binary sum of 4 bits to select one of up to 16 string inputs to be sent to the output. It transfers the
selected string when it detects a change in its input index. This module is mostly used to select strings
based upon status bits. For example, if a status represents CLOSED when zero and OPEN when one, then
it could be dragged into the bit (val=1) input of this module and then the strings ‘CLOSED’ and ‘OPEN’
typed into the first two string inputs respectively. Then the module’s string output would give ‘CLOSED’
or ‘OPEN’ depending on the input state.

Inputs That Must be Constants:
e Number bytes/string...integer identifying space to be set up for this module’s output. This value
should be greater than the number of characters in the longest input’s string.

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Bit(val=1...8)...statuses that select a string from the input string list.

e String 0 to 15...string inputs from which one is to be chosen by the index to become the output of this
module.

Primary Outputs:
e Output string...Name.String. . .string output selected from the string input list by the index.
e Byte sum...Name.Sum...integer sum of status inputs (0-15)

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used to provide a more pleasing display of alarm conditions, sequencer states, etc. than simple statuses.

StringSwitchPriority Module

When triggered, the StringSwitchPriority module reads input bits until it finds one that is ON, in
which case the module outputs that bit's corresponding string. If no bit is ON in the list, it emits default
ALLOFF string. If mode=0 or blank, shows only first ON bit found (highest priority) even if more than
one bit is on. If mode=1 and more than one bit is on, module will advance to next true bit's string each time
enable is asserted.

The main intention of this module is to enable you to show any of a series of statuses on a single
line of the display by showing the highest priority one that is true (mode=0); or showing any that are on,
say once per second, by triggering the module once per second (mode=1).

Inputs That Must be Constants:
e Max string bytes...integer that tells compiler maximum output string length.

Other Inputs:

e Trigger new test...status input that causes module to scan inputs and issue new output string.

e Mode (0,1)...status input: 0= show only first ON bit found (highest priority); 1= advance to next true
bit's string each time enable is asserted.

e All off string...string that will be output if all status inputs are off.

e Bit 1-10...status inputs that indicate need to output corresponding string.

e String 1-10...strings that will be emitted when corresponding bit is true

133

Software Modules

Primary Outputs:
e Qutput string...Name.Str...string output of highest priority or next bit that is true.
e Have true bit status...Name.HavBit...status output indicating that at least one input status is on.

Outputs for Internal Use:
e Cycle counter...Name.Cnt...integer of last bit that tested true if mode=1.

Limitations: None

Expected Applications:
Use to condense list of statuses or alarms to occupy only one line on display with highest priority status
shown; or showing status strings in cyclic method.

SyncValues

When triggered, SyncValues scans two input values and compares them with associated output
values. If either value has changed, the module sets the value output to the new value and installs the new
value back into the older input. Any change in A values will cause the change in A trigger output to be
asserted. Any change in B values will cause the change in B trigger output to be asserted.

Inputs That Must be Constants: None

Other Inputs:
e A input...Floating point input that is compared with the Value output.
e B input...Floating point input that is compared with the Value output.

Primary Outputs:

e Value...Name.Val...floating point output that holds the most recent value present on the
corresponding inputs.

e A changed trigger...Name.AChng...status trigger indicating that a new value has been installed from
the input A input.

e B changed trigger...Name.BChng...status trigger indicating that a new value has been installed from
the input B input.

Outputs for Internal Use: None

Limitations: None

Expected Applications:

Use this module to hold the latest value entered by an operator or received from the telemetry channel. For

example, the input A entry could come from a local setpoint; input B entry could come from the telemetry
receive array. Whichever was entered last would be captured in the output values.

134

Software Modules

SyncToRTC Module

When enabled, the SyncToRTC module issues triggers on the specified interval, synchronized to
realtime clock (RTC). Enter one of the three input intervals and leave the others zero or blank. This
module will issue a trigger after expiration of the specified interval aligned to the interval's zero event, and
zero of more subordinate times. For example, if you specify a 5 minute sample interval and leave the
seconds and hours entries blank, then the module will issue triggers at 0,5,10,15,20... minutes of the hour,
at the zero second of each 5 minute tick.

Inputs That Must be Constants: None

Other Inputs:
e Enable...status input that when true or blank enables triggers to be generated. Zero disables trigger
outputs.

e Seconds interval (1-30)...integer in range of 1 to 30 seconds that sets the seconds interval of the RTC
at which triggers will be generated in each minute. E.g., if you set this to 13, then a trigger will be
generated when the RTC second hits 0,13,26,and 39 seconds.

e Minutes interval (1-30)... integer in range of 1 to 30 minutes that sets the minutes interval of the RTC
at which triggers will be generated in each hour. E.g., if you set this to 15, then a trigger will be
generated when the RTC minute hits 0,15,30,and 45 minutes.

e Hours interval (1-12)...integer in range of 1 to 12 hours that sets the hours interval of the RTC at
which triggers will be generated each day. E.g., if you set this to 6, then the trigger will be generated
when the RTC hour hits 0,6,12, and 18 hours.

Primary Outputs:
e Trigger output...Name.Trg...status trigger that will be generated on the specified uniform interval.

Outputs for Internal Use:
e Temp time...Name.Temp...value of last read RTC item.

Limitations: None

Expected Applications:
Use to generate uniform triggers synchronized to the RTC.

Toggle Module

The Toggle module provides a two state latch or flip flop that can be set, cleared, or toggled. The
set and clear inputs can be used to unconditionally set the flip flop state to 1 or 0 respectively. When the
clock input transitions from 0 to 1, the flip flop will transition to the opposite state, which will become its
new output. The module provides both true (.Q) and inverted (.Qbar) outputs.

Inputs That Must be Constants: None

Other Inputs:

e Enable input...status input that prohibits toggling when false.

e Clock input...status input that will cause the state to be toggled and sent to the Q output whenever the
clock input transitions from 0 to 1.

e Clear input (sets Q=0)...status input that when 1 causes the Q output to go to zero.

e Set input (sets Q=1)...status input that when 1 causes the Q output to go to one.

135

Software Modules

Primary Outputs:
e OQutput Q...Name.Q...status output that reflects the flip flop’s latch state
o Inverted output...Name.Qbar...status output that is the inverse of the Q output

Outputs for Internal Use:
e Old clock input...Name.Old...image of last clock input to detect rising edges

Limitations: None

Expected Applications:
Use to give users a simple toggle on/off control from keystrokes.

TriggerDelay

The trigger delay module accepts an input trigger, times out for a user specified number of
seconds, then reissues the trigger. This module enables you to delay actions until other events have
completed that may be initiated by the same trigger. The delay timer has 1.0 second resolution and range
0f 32767 seconds.

Inputs That Must be Constants: None

Other Inputs:

e Trigger input...status trigger input to initiate timing.

e Delay sec...floating point number of seconds that the input trigger is to be delayed before the output
trigger is issued.

Primary Outputs:
e Trigger output...Name.Trg...status trigger output issued after a delay from the input trigger.
e Status armed...Name.Arm...status output indicating that the module is timing a trigger

Outputs for Internal Use: None
e Delay timer...Name.Dly...integer timer for delay

Limitations: None

Expected Applications:
Use to sequence functions triggered by the same event.

TriggerEveryXSecond

This module issues a trigger event at specified intervals synchronized with the real time clock
seconds register. The module will count seconds until the designated number of seconds has passed. Then
it will issue a trigger and reset the seconds counter. The counter is a count down counter that can be preset
to force it to synchronize with other events. The preset forces the X value to be installed in the count down
seconds counter. If no preset trigger is received, the module will issue triggers indefinitely on the interval
specified. This module is typically used to cause events to happen every X seconds; for example, to force a
poll every 10 seconds.

Inputs That Must be Constants: None

136

Software Modules

Other Inputs:
o X interval seconds...integer number of seconds between successive trigger outputs.

Primary Outputs:
e Trigger output...Name.Trg...status trigger output that will be issued every X seconds.

Outputs for Internal Use:
e Seconds counter...Name.Cnt...integer counter of seconds before issuing trigger.

Limitations: None

Expected Applications:
Used to trigger events in synchronism with the RTC seconds register.

TriggerGen

This module is used to issue a trigger on the rising and falling edges of a status input. Since status
inputs can stay on continuously, and some modules execute events when a status input is true, this module
enables you to cause the event to be executed only when the status turns on and/or off, rather than
repetitively as long as the status is on.

Inputs That Must be Constants: None

Other Inputs:
e Status input...status whose rising or falling edge is to cause at trigger to be issued.

Primary Outputs:

e Output trigger...Name.Trg...status trigger output that will remain true for the one scan following the
scan during which the input status transitions from off to on.

e OQutput falling edge trigger...Name.FallTrg...status trigger on high to low transition of input.

Outputs for Internal Use:
e Old input...Name.Old...status copy of last status input for rising edge detection.

Limitations: None

Expected Applications:
Use to convert a steady status to a trigger.

TriggerOnChange

This module issues a trigger output whenever an input value differs by more than a user specified
amount (deadband) from the value it had recorded at the previous trigger. This module can be used to
watch for changes in analog values in order to trigger a poll when a change needs to be reported.

Inputs That Must be Constants: None
Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result
e Input value...floating point value that is being monitored for a change.

137

Software Modules

e Deadband...floating point amount by which the input value must change before a change trigger is
issued.

Primary Outputs:

e Output trigger...Name.Trg...status trigger output indicating that the input value has changed by more
than the deadband.

Outputs for Internal Use:
e Old value...Name.Old...floating point value captured at previous trigger.

Limitations: None

Expected Applications:
Use this module to detect changes in analog values to trigger reporting or other events.

TriggerOnKeyMany

The TriggerOnKeyMany module issues a trigger whenever the user hits a designated key while a
particular display is being presented either on the LCD or on some other port. You can designate the port
number where the keystroke must be entered in addition to the designated display number. If no display is
specified, then the designated keystrokes will be accepted on any display on that port. The port number
must be entered as an integer in the range of 0 through 2. Port 0 is the LCD display, port 1 is the
programming serial port, and port 2 is the modem/RS232 port. .

This module enables you to setup a project so that an operator can press a key to cause some
action to take place. For example, say you want to enable the operator to acknowledge alarms from display
number 3 on the LCD. If you set up the TrigOnKeyMany module to issue a trigger when display 3 is
presented on port 0, and you use the output of, say key 2 from the TriggerOnKeyMany module as the input
of all alarm output modules, then when the operator is looking at that display on the LCD and he presses
key 2, all alarm outputs will cease flashing. Of course, you should include a prompt on display number 3
such as “Key 2...acknowledge alarms” to prompt the operator.

If you want the TriggerOnKeyMany module to only respond when an operator is logged on, drag
the System.Logon output from the status database and drop it into the enable input of this module.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=disabled, |=enable output

e Display #...integer number of the display from which the keystroke is to be accepted. If left blank,
then the keystroke will be accepted from any display.

e Port #...integer port number of the port from which the keystroke is to be accepted.

Primary Outputs:

e Trigger on key 0-9...Name.Key0...Key9.. status trigger issued immediately after the user pressed the
designated key on the designated port.

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Module enables operator to cause changes in control actions, acknowledge alarms, etc.

138

Software Modules

TriggerOnRTC

The TriggerOnRTC module enables you to trigger an event or action based on specific
comparisons against the realtime clock/calendar (RTC). It does this by giving you a cell for each of the
seven RTC numeric items into which you can install a number that the RTC must match in order for the
module to generate its output trigger. Items you leave blank are regarded as always comparing true. In
addition, once the module detects a true comparison and generates its trigger, it will inhibit further true
outputs until the comparison has returned to false for at least one scan. For example, say you wish to
generate a trigger to cause an event, such as a daily report, at 10 minutes after 6 AM each day. You would
set up the inputs as follows:

RTC ITEM VALUE
Seconds
Minutes 10
Hours

Day

Month

Day of week
Year

With this setup, the comparison will be true only when the RTC minute value is 10, and the hour is 6. All
other values are regarded as always true. Notice that the comparison would be true for the entire minute at
6:10 AM, so the module disarms itself until a false comparison, which will occur at 6:11 AM. The next
true comparison won’t happen until 6:10 AM the following day.

Inputs That Must be Constants: None

Other Inputs:

e Seconds ...integer seconds to compare. Range is 0 to 59.

Minutes ...integer minutes to compare. Range is 0 to 59.

Hours ...integer hours to compare. Range is 0 to 23.

Day of month ...integer day of month to compare. Range is 1 to 31.

Month ...integer month to compare. Range is 1 to 12.

Day of week ...integer day of week to compare. Range is 1 (Sun) to 7 (Sat).
e Year ...integer year to compare. Range is 0 to 99.

Primary Outputs:
e Trigger event output...Name.Trigger...trigger true when all 7 RTC items match.

Outputs for Internal Use:
e True compare...Name.Old...flag to disarm until after next false comparison

Limitations: None

Expected Applications:
Use to trigger RTC-based functions.

TriggerOnSpecialKeys

The TriggerOnSpecialKeys module Issues a trigger event for use by other modules
whenever a special keystroke occurs while the designated user display (not a menu) is presented on the
LCD. Special keys supported are the clear (C), up arrow (U), down arrow (D) and enter (E) keys. Leave

139

Software Modules

Display # blank if you want triggers from all displays. To require user to be logged on, drag logon status
from system module into the Enable input of this module.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=disabled, l=enable output

e Display #...integer number of the display from which the keystroke is to be accepted. If left blank,
then the keystroke will be accepted from any display.

Primary Outputs:

e Trigger on key Enter key...Name.Enter...status trigger issued immediately after the user presses the
‘Enter’ key.

e Trigger on key Clear key...Name.Clr...status trigger issued immediately after the user presses the
‘Clear’ key.

e Trigger on key Up arrow key...Name.Up...status trigger issued immediately after the user presses the
‘Up arrow’ key.

e Trigger on key Down arrow key...Name.Down...status trigger issued immediately after the user
presses the ‘Down arrow’ key.

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use this module to augment the TrigOnKeyMany module to enable detection of the non-numeric keys.

TrigOnBitThenCir

The TrigOnBitThenClr module will issue a trigger when its input status bit becomes true, and
then it will clear the input status. It is most useful for detecting a flag sent in from another unit or from a
modbus SCADA master so that the action triggered by the flag will be taken only one time. By clearing the
source flag after its detection, the trigger will only be acted upon once unless the SCADA source sends it
again.

Inputs That Must be Constants: None
Other Inputs:
e Status input...status that when true will cause the module output to become true for one scan. After

detecting the true input, the module will clear the status input.

Primary Outputs:
e OQutput trigger...Name.Trg...status trigger output generated by true status input.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to assure that only one action will be taken on received telemetry status.

140

Software Modules

TrigOnChangeMany

This module issues a trigger output whenever an input value differs by more than a user specified
amount (deadband) from the value it had recorded at the previous trigger. It works on as many as 8 inputs,
provides an individual change trigger on the first 8 inputs, and provides a composite trigger that indicates if
a change has occurred on any of the 8 inputs. This module can be used to watch for changes in analog
values in order to trigger a poll when a change needs to be reported.

Inputs That Must be Constants: None

Other Inputs:

e Value 1-8...floating point values that are being monitored for a change.

e Deadband 1-8...floating point amounts by which the input values must change before a change trigger
is issued.

Primary Outputs:

e Value 1-8 changed...Name.Trgl1-8...status trigger outputs indicating that the corresponding input
values have changed by more than the associated deadband.

e Any value changed...Name.TrgAny...status trigger output indicating that a change has been detected
on one or more of the 8 inputs.

Outputs for Internal Use:
e Value 1-8 copy...Name.Vall-8...floating point copy of value captured at previous trigger.

Limitations: None

Expected Applications:
Use this module to detect changes in analog values to trigger reporting or other events.

ValueTest

The ValueTest module enables you to compare two floating point or integer values and obtain any
combination of the possible results for use in controls, alarm generation, etc. The comparison is:

Result= Input A — Input B

The output statuses will remain true or false for as long as the condition persists, or for as long as the
enable is false.

Inputs That Must be Constants: None

Other Inputs:

e Input A...floating point value from which input B is subtracted for the result.

e Input B...floating point value to be subtracted from input A for the result.

e Enable...status input to enable the calculation. Outputs will be held unchanged if enable is false.

Primary Outputs:

e A>B...Name.GT...status output true if input A is greater than B.
A>=B...Name.GE.. status output true if input A is greater than or equal to input B.
A=B...Name.EQ...status output true if input A is exactly equal to input B.
A<>B...Name.NE...status output true if input A is not exactly equal to input B.
A<=B...Name.LE...status output true if input A is less than or equal to input B.

141

Software Modules

e A<B...Name.LT...status output true if input A is less than input B.
Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use for general purpose integer or floating point value comparisons.

ValueTestTrig

The ValueTestTrig module, when enabled compares the input A with input B. The function input
specifies the comparison to be made: 0: A>B, 1: A>=B, 2: A=B, 3: A<>B, 4: A<=B, 5: A<B. When the
comparison produces a true result, the True output status will be 1; if the comparison produces a false
result, the True status output will be 0. When the comparison goes from false to true, the trigger output will
be generated.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input that enables the comparison. Outputs will be held unchanged if enable is false.

e Input A...floating point value from which input B is subtracted for the result.

e Input B...floating point value to be subtracted from input A for the result.

e Function...integer that specifies the comparison to be made: 0: A>B, 1: A>=B, 2: A=B, 3: A<>B, 4:
A<=B,5: A<B

Primary Outputs:

e Status output...Name.True...status result from input comparison. The specific comparison is specified
by the function input.

e Trigger output...Name.Trig...trigger status output that will be asserted when the status output
transitions from false to true.

Outputs for Internal Use: None

Limitations: None

Expected Applications:

Use to provide a single comparison and provide both a status result and a trigger result. The advantage of

this module over the ValueTest module above is that avoids filling up the status database with unnecessary
variables.

142

Software Modules

Statistics Modules

AvgValue

The AvgValue module is used to maintain an ongoing average of its input over time. It does this
by keeping an accumulation of input samples and dividing by the number of samples it has summed. Its
reset input will latch the present average and then zero the sum and sample counter to start a new average.
In a typical application, you might use this module to keep a daily average that you reset at midnight, so the
latched average shows the average over the prior 24 hours, and the present average shows the average since
midnight.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Input to average...floating point value whose average this module is to calculate.

e Reset...status trigger input that will cause the module to latch the present average and start a new
average.

Primary Outputs:

e Average value...Name.Avg...floating point value representing the present average since the last
module reset.

e Latched average...Name.Avg...floating point value equal to the average that existed just before the
last module reset.

Outputs for Internal Use:
e Sample count...Name.Cnt...integer count of samples taken since last module reset.

Limitations: None

LogMany

The LogMany module is used to log multiple items at the same time. With each sample it stores
one record, consisting of a time tag and up to 20 values, to the onboard serial EEPROM which has 2
Mbytes capacity. The time tag and each floating point or integer sample consume 4 bytes of storage each.
Time tag resolution is 4 milliseconds. Status inputs to be logged are packed all into a single 4 byte field.
When the log is full, if mode=0, then logging stops; if mode=1 then logging continues with the new sample
overwriting the oldest stored sample. Starting page number should be left blank; it will be assigned by the
compiler. Logger ID number (0-7) identifies this logger for the DumpLogTLM module to respond to
telemetry polls for logged data. The Sample count for TLM output contains the count of samples taken
since the last telemetry dump of the log. When a program with the LogMany module is compiled, the
logger flash occupancy is presented at the bottom of the R3Setup screen along with the logger capacity. If
the logger memory requirements exceed the capacity, R3Setup will present an error message upon
compilation.

Inputs That Must be Constants:
e Number of records in DB...integer specifying how many time tag/data records are to be stored.

Inputs That Must be Pointers: None

143

Software Modules

Inputs Used Internally:

e Starting page number...integer assigned by compiler to allocate space on EEPROM. This should be
left blank.

Other Inputs:

e Trigger sample...status trigger that will cause a sample to be taken when true.

e Enable logging...status input that will disable sampling if false.

e Clear log/reset...status input that when true will erase entire log.

e Input sample #1-20...floating point inputs to be logged. Logging of a record stops if blank input
encountered.

e Starting page number...integer that should be left blank...it will be entered by the compiler.

e Mode (0,1)...0=stop logging when log full; 1=overwrite oldest sample if log full.

e Logger ID number...integer (0-7) that identifies this logger in this unit for the DumpLogTLM module.

Primary Outputs:

e Number of records logged...Name.Log...integer indicating how many records have been logged
e First index...Name.First...integer index pointing to oldest record in database.

e Next index...Name.Next...integer index pointing to next record in database to be written.

e Number of records saved...Name.Num...integer record count presently stored.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use for simultaneous storage of multiple values with the same time tag.

MaxValue

The MaxValue module is used to latch the maximum value that an input has attained since the
module was last reset. Upon reset, the output value is set to match the input value. If at any time the input
value exceeds the output value, then the output value is set to the input value.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, O=hold result, 1=calculate new result

e Input...floating point input whose maximum value is to be captured.

e Reset...status trigger input that will reset the latch to the present value.

Primary Outputs:

e Maximum value...Name.Max...floating point output equal to the maximum value the input has
attained since the last reset.

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use to capture maximum reservoir level, flow rate, temperature, etc.

144

Software Modules

MinValue

The MinValue module is used to latch the minimum value that an input has attained since the
module was last reset. Upon reset, the output value is set to match the input value. If at any time the input
value falls below the output value, then the output value is set to the input value.

Inputs That Must be Constants: None

Other Inputs:

e Enable...status input, 0=hold result, 1=calculate new result

e Input...floating point input whose minimum value is to be captured.

e Reset...status trigger input that will reset the latch to the present value.

Primary Outputs:
e Minimum value...Name.Min...floating point output equal to the minimum value the input has attained
since the last reset.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to capture minimum reservoir level, flow rate, temperature, etc.

TotalizeEvent

This module is designed to totalize a value, such as a flow, during an event and to latch the total at
the end of the event. The event start and end are designated either by a status that goes true to start the
event and false to end the event; or by the measured analog value exceeding a threshold to start the event,
ending the event when the value falls below the threshold. During the event, the module totalizes the
analog value and ceases totalizing when the event ends. Then it presents the total as an output value, along
with the event duration in seconds, and start and end times as strings. Some rescaling math is included in
this module. The value compared against the threshold is the input analog value times multiplier M1. The
value totalized is input value * M1 * M2. Multipliers M1 and M2 can be used to rescale the measured
value to alternate units. If no rescaling is required, values M1 and M2 can be left blank. This module can
be used to calculate pump efficiency by using a pump running contact to trigger the event, and then
dividing the total flow by the event duration to obtain flow per unit time.

Inputs That Must be Constants:
e String length chars...integer maximum string size of time tags. Use a value of 40 here.

Other Inputs:

e Input to totalize...floating point value to be totalized.

e Multiplier 1...floating point value M1 that is multiplied by the analog input before threshold
comparison.

e Multiplier 2...floating point value M2 that is multiplied by analog input and M1 before totalization.

e Event threshold/dropout...floating point value that must be exceeded by the analog input * M1 to
begin an event. When analog input * M1 falls below this threshold, the event is terminated.

e Reset trigger...status input that will zero the totalizer and arm for another event.

e Force event status input...status input whose OFF to ON transition will start an event; and whose ON
to OFF transition will terminate an event.

e Enable...status input that will enable operations when true and disable operations when false.

145

Software Modules

Primary Outputs:

e Latched total...Name.Total...floating point total of (input * M1 * M2) latched at end of event.

e Latched event sec...Name.Sec...integer duration of event in seconds, latched at end of event.

e Latched start time...Name.Start...string time tag of start of event

e Latched end time...Name.End...string time tag of end of event.

Event in progress status...Name.Event...status output that will be true during an event and return to

false at the end of the event.

e Event done trigger...Name.Done...status trigger output that will be true for one scan at the end of the
event, indicating that new values have been latched into module’s latched outputs.

e Present total...floating point running total of (input * M1 * M2) during an event in progress.

Outputs for Internal Use:

e Event timer...Name.Time...integer timer to accumulate event time
Accumulator...Name.Accum...floating point sample accumulator

Sample counter...Name.Cnt...integer counter of samples taken so far during event
Force event image...Name.Img.. .status image of force status input to detect changes
Temp string...Name.TempStr...string latch of beginning time tag

Limitations: None

Expected Applications:
Use to gather statistics of short term events and calculate pump efficiency, energy consumption, etc.

TotalizeFlow

This module will totalize flow whenever the flow input exceeds the low flow dropout. It will
perform a fine flow accumulation, taking a sample each scan for one minute, and then add that total to its
flow accumulator at the end of each minute. You can select from four input flow engineering units (CFS,
GPM, GPS, MGD) and have the totalizer provide output total in one of five total flow engineering units
(Cuft, gallons, Kgal, Mgal, acre ft). A preset input and trigger are provided so the operator can preset the
flow to a desired value, or zero it as necessary.

Inputs That Must be Constants: None

Other Inputs:

e Flow input...floating point input that is to be totalized whenever it exceeds the low flow dropout
threshold.

e Units of flow input (1-4)...integer selection of input engineering units: 1=CFS, 2=GPM, 3=GPS,
4=MGD

e Dropout...floating point value in the same units as the flow input below which the flow will not be
totalized.

e Units of total (1-5)...integer selection of output engineering units: 1=Cuft., 2=gallons, 3=Kgal,
4=Mgal, 5=acre ft.

e Preset trigger...status trigger input that when true will transfer the preset input value to the total output

e Preset input value...floating point input in the same units as the total output that will be loaded into the
total output to become the new beginning total.

e Enable...status input that must be true to enable totalizing. False disables totalizing.

Primary Outputs:
e Total flow...Name.Total...floating point total flow output in output engineering units.

146

Software Modules

Outputs for Internal Use:

e Minute holder...Name.Min...integer minute value to detect new RTC minute.

e Sample counter...Name.cnt...integer count of samples taken this minute, maximum 65535 counts.
e Sample accumulator...Name.Accum...floating point flow sample accumulator this minute.

Limitations: None

Expected Applications:
Use for general purpose flow totalization.

TotalizeTime

This module will totalize time whenever an input status is ON. It will perform a fine time
accumulation each minute, and then add that total to its time accumulator at the end of each minute. Output
is time in hours. A preset input and trigger are provided so the operator can preset the time total to a
desired value, or zero it as necessary.

Inputs That Must be Constants: None

Other Inputs:

e Status input...status input that, when true, indicates totalization is to proceed, and, when false,
indicates totalizion is to be suspended. This is usually a status that indicates when a piece of
equipment is running.

e Preset trigger...status trigger input that when true will transfer the preset input value to the total output

e Preset input value...floating point input that will be loaded into the total output to become the new
beginning total.

Primary Outputs:
e Total hours...Name.Total...floating point total running time output in hours

Outputs for Internal Use:

e Minute holder...Name.Min...integer minute value to detect new minute.

e Sample counter...Name.cnt...integer count of samples taken this minute.

e Sample accumulator...Name.Accum...floating point time accumulator this minute.

Limitations: None

Expected Applications:
Use for general purpose equipment run time totalization.

147

Software Modules

Communications Modules

ComSetup

The communications setup module is used to establish the protocol, baud rate, tone use, etc. of
each serial communication port in the RUG3. At least one ComSetup module must be supplied for each
serial port installed in a unit, and each must be triggered before the port can be used to send or receive data.
The exception is port 1, the programming RS232 port, designated P1, which defaults to 9600,N,8,1, ASCII
on boot up. Port number input must be a constant. All other inputs can be either constants or variables
except the “Trigger to install setup” input, which must be a trigger input, such as the SysSetup module’s
System.BootTrg output, which would cause the ComSetup module’s parameters to be installed right after
boot up. Note that you may have as many ComSetup modules as you wish for each port; the last one to be
triggered will govern the behavior of the port.

Setting Communication Protocol

The ComSetup module establishes the communications protocol, or mode, the serial port is to
use. These are the available choices:

e 1...ASCII In this mode, the port uses the ASCII character set to send and receive human-readable
text. This mode is used when the port is to provide formatted displays to be read by a human operator.

e 2...RUGY protocol This protocol is the preferred protocol to be used in RUG3 to RUG3/5/9
communications. It can employ messages up to 254 characters, or 120 integers, or 60 floating point
values per message. It can also provide automatic store and forwarding involving up to three
intermediary stations.

e 3...RUGH protocol. This protocol matches that used in the RUG®6,7 and 8 units. It should be used if
the system consists of a mix of RUG6,7, or 8 units that must interact with a RUG3. This protocol
enables a RUG3 to be added to a RUG6 system without requiring modification to the RUG6 system.

e 4. .MB slave protocol. This is the common Modbus RTU protocol (as opposed to Modbus ASCII
protocol). This, or the MB slave2 protocol, should be used when communicating with a SCADA
master. In this implementation, the RUG3 maintains the transmit and receive arrays as separate; i.e.,
commands to read from the RUG3 will obtain data from the RUG3’s transmit array, and commands to
send data to the RUG3 will send data into the RUG3’s receive array.

e 5...MB master protocol This protocol enables the RUG9 to poll Modbus slave RTU’s and collect data
from them. In this mode, you specify the message type, slave address, starting register and number of
registers to be transferred, and the RUG9 assembles the correct message and transmits it, then collects
the reply. This should be used to poll non-RUGID RTU’s that use the Modbus RTU slave protocol.

e 6...MB slave2 protocol. This protocol is almost the same as mode 4 above. The difference is that
polls to read from RUG3 holding registers will obtain their values from the RUG3’s receive array
rather than the RUG3’s transmit array. This more closely corresponds to the standard Modbus
operation than does mode 4 above since it enables the SCADA master to read back setpoints and
control bits it has written to the RUG3.

e 7...ASCuser. In this case, the RUG3’s operating system will not act upon characters received, but
will instead leave them in the input buffer for parsing by other modules. This mode should be used for
communications with instruments that use ASCII to send and receive data.

e 8...ALERT. This protocol uses slightly different modem tones and enables the RUG3 to function as

an ALERT transmitter for reporting remote environmental data.

9...True Wireless...same as RUG9 protocol with different CRC security

11...Modbus TCP slave. Same as mode 4 above except TCP compatible.

12...Modbus TCP slave mode 2. Same as mode 6 above except TCP compatible.

13...Modbus TCP master. Same as Mode 5 above except TCP compatible.

148

Software Modules

Inputs That Must be Constants:

e Port # (1,2)...integer designating which port on the board this module references (1=pgm serial port,
2=modem/RS232/RS485 port).

o Com buffer # bytes...integer that defines buffer size allocated to this port.

Other Inputs:

e Trigger to install setup...status trigger input. This input TRUE causes this module’s setup to be
installed in the designated port. This should be done at boot up and/or periodically, say once per hour.

e (=232, 1=Mdm, 2=485...integer to specify hardware mode of channel...RS232, 300 baud internal
modem, or RS485. RS485 is optional.

e Baud (50-56,000)...integer specifying any baud rate from 50 to 56,000 baud. You are not limited to
standard baud rates. The actual baud rate is derived from a clock and calculation as
BAUD=115,200/[(integer)(115,200/baud designator)]. When the modem is in use, the system will set
the modem for FSK low tones operation for all baud rates 300. Recommended: 300 baud for modem
use, 9600 baud for RS232 use.

e Parity...integer specifying parity choice: O=none, 1=o0dd, 2=even, 3=mark, 4=space. Recommended:
O=none.

e Address (1-65535)...integer address for this port on the network. The address establishes this unit’s
address in a system of RUGID units. No two units in a system can have the same address, except that
any number of units can have the same address as long as only one is allowed to transmit. The others
would be listen-only in that case. Address range 1-255 forces use of one byte address in msg header.
For R9 protocol, if address>255, unit uses 2-byte address with range of 1-65535.

e Mode (1-13)...integer to select communication protocol. See above.

e TX delay tenths of sec...integer to set delay between the time the RUG3 keys its modem and radio,
and the time it actually sends data. This is necessary to enable receiving radios and modems to acquire
the signal. Recommended: for phone line applications, set this to 15; for radio applications, set it to
15.

e TX amplitude (0-255)...integer to set output transmitter amplitude. 0=no output, 255=max output.

e Com flags...integer in form of packed bits: bit 0 (LSB)=spare, bit 1=suppress trailing nulls, bit
2=suppress reply if #ReplyRegs=0. Usually leave blank.

Primary Outputs:

e Receive in progress...Name.Rx...status output will be true while data being received.

e Transmit in progress...Name.Tx...status output will be true while data being transmitted.
Outputs for Internal Use: None

Limitations: None

Expected Applications:
ComSetup must be used to set necessary parameters for each serial port in the system.

149

Software Modules

ComWatch

When triggered, the module will read the designated serial port buffer and send an ASCII version
of the contents to the other serial port in hex-ASCII format. When triggered to erase the port buffer, the
module will write hex 0's to the designated port's buffer. This module is intended to enable you to read
buffer contents in order to debug serial port problems by examining the contents of the buffers to see if the
received/transmitted strings are correct or to see if the port is working at all. The output format is the
following:

54 65 73 74 20 73 74 Test st
72 69 6E 67 20 23 31 ring #1
2E 65 73 74 20 73 74 ,Test s
73 74 72 69 6E 67 20 tring #
32 0D 0A 00 00 00 00 2......
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 00 00 00 00

Inputs That Must be Constants:
Port#...integer port number (1-2) to be read or erased.

Other Inputs:

Trigger read port buffer...status trigger that when true will cause the unit to read the designated serial port
and send the contents to the alternate serial port.

Trigger erase port buffer...status trigger that when true will cause the unit to write all zeros into the
designated buffer.

Primary Outputs: None

Outputs for Internal Use:
e Progress index...Name.Prog...integer for tracking writing of output to buffer.

Limitations: None

Expected Applications:
Use to debug serial port performance.

CycleDisplay

The CycleDisplay module is a sequencer that enables the programmer to specify a range of
displays to be presented automatically with controllable dwell time on the displays. When enabled,
controls cycling through user defined displays. Port range is 0 (LCD), 1 (programming port) and 2
(modem/RS232 port). Sequencer will cycle from min through max display numbers then restart with min
display. Dwell sec specifies how long unit will dwell on each display. Holdoff time specifies how long the
module will wait before resuming cycling after the user has accessed one of the menus on the designated
port.

150

Software Modules

Inputs That Must be Constants:
e Port#...integer port number (0-2).

Other Inputs:

e Enable...status input: 0=disable cycling, 1=enable cycling.

e Min display #...integer specifying lowest numbered display to start the cycle

e Max display #...integer specifying highest numbered display in the cycle

e Dwell sec per display...integer seconds a display is to be shown before moving to the next display in
the cycle

e Holdoff time sec...integer seconds that cycling is to be disabled after a user keystroke.

Primary Outputs:
e Present display number...Name.Dsp...integer number of display presently being displayed.
e Present menu sequence...Name.Menu...integer indicating which menu presently being displayed

Outputs for Internal Use:
e Timer...Name.Tmr...integer timer used for all timing.

Limitations: None

Expected Applications:
Use to automatically cycle user displays.

DumpLogTLM

DumpLogTLM module prepares responses to polls requesting dumps of logged data using the R9
CRC-secured format. This module works with either LogMany or EventLogSetup modules. This module
will decode the dump request received by telemetry, find the logger using the logger ID contained in the
message, prepare the response, and then trigger transmission of the reply.

Inputs That Must be Constants:
e Port (1 or 2)...integer indicating port to use (1-2).

Primary Outputs: None

Outputs for Internal Use:

e Received control field...Name.Ctrl...integer control field of received request.

e Cmd 1" index to send...Name.Cmd1st...integer identifying first logged item to send.

e Cmd num indices to snd...Name.CmdNum...integer specifying number of logged items (records) to
send.

Format word 1-5...Name.F1-5...integer with packed bits specifying format of analogs to be dumped.
Next index to send...Name.Next...integer index to send in next message.

Number indices to go...Name.Num...integer indicating how many records are left to send.

Last index sent...Name.Last...integer first index sent in last message.

Last number to go...Name.LNum...integer number of records to go as of last message sent.

Limitations: None

Expected Applications:
Use to send handle requests for dumping of logged data using R9 protocol.

151

Software Modules

DumpLogToPort

This module is used to read a data log, format it to ASCII, and dump it to the designated port. To
use this module, you must identify the data logger to use, and then trigger the dump. When triggered, the
module sends logged data to designated port in ASCII form. Header fields, if defined, precede the first
time tag in the dump. The dump starts with first sample and ends when the specified number of records
have been dumped or at end of file. Each line consists of date field followed by one or more data fields. A
new line starts when next date code is found. One delimiter char separates data entries on each line (default
comma). Special fields in the header, notably the period character, must be entered using <123> format,
where the value between <> characters specifies the decimal equivalent of an ASCII character. Header
characters that MUST use <> fields are: period=<46>, left carat=<60>, right carat=<62>, and vertical
bar=<124>. The special format field identifies dump format: 0 or blank=ASCII format with delimiters;
1=WISKI format. Mode specifies the direction through the log: O=start with oldest record, 1=start with
newest record. First field to dump on line specifies which of up to 20 inputs logged in each record is to be
sent first after the time tag. # of fields to dump per line sets how many logged inputs are to be dumped per
line. The module avoids overrunning the transmit buffer by looking at buffer vacant capacity before
sending the next sample. When done, the module will issue a trigger that you can use to clear the log, if
necessary, or issue a prompt, etc. The dumped data format is the following:

11/15/2006 13:14:36,1.15,1.56,2.78,4.76,4.77,4.79,5.1,5,5.01,5.12
11/15/2006 13:14:45,5.15,5.25,5.26,5.78,4.95,4.34,4.02,3.78,3.41

A time/date tag found in the data will cause the module to issue a carriage return/line feed to start a new
line. Therefore, each line will begin with a time tag, taken from the logged data file, followed by a series of
data samples converted to numeric strings and formatted as specified in this module. The delimiter
character between each field can be any ASCII character; comma is the default. Using the comma
character makes the file comma-delimited, so it is compatible with Microsoft’s Excel spreadsheet along
with others.

Inputs That Must be Constants:
e Send to Port #...integer indicating port to use (1-2).

Inputs That Must be Pointers:
e Logger holding data...integer pointer to data logger’s data. It is the logger’s Name.Log output from
the floating point database.

Other Inputs:

e Trigger dump...status trigger input that initiates data dumping sequence.

e Delim char (44=coma)...integer defining which character is to be used to separate each sample or time
tag in the file. The following are commonly used characters as delimiters: 44=comma, 20=blank,
124=pipe

e Chars right of decimal...integer in range of 0 to 7 specifying how many characters to the right of the
decimal are to be included in conversion to ASCII before dumping each sample. Since samples are
stored as floating point numbers, full precision is available in the data log.

e Special format...integer indicating any special formatting. Blank or zero gives standard ASCII.
1=LADWP WISKI format.

e Mode...integer, 0=dump oldest to newest samples, 1= dump newest to oldest samples.

e #records to dump...integer specifying how many records to dump.

e First field to dump on line...integer specifying which field in record (1-20) is to be the first dumped on
each line.

e # fields to dump per line...integer specifying number of fields in record to be dumped in each line.

e Header string #1-11...strings to be dumped at the beginning of each dump.

152

Software Modules

Primary Outputs:
e End of line trigger...Name.LineTrg...trigger issued at end of each dumped line.
e End of log trigger...Name.LogTrg...trigger issued at the completion of each data dumping event.

Outputs for Internal Use:

e Sequencer...Name.Seq...integer internal state sequencer
e Next index...Name.Nxt...integer internal index counter
e Count...Name.Count...integer count of records sent.

Limitations: None

Expected Applications:
Use to send formatted data log to serial port.

GetStrFromPort

This module captures a string from a port, up to a CRLF and makes the string available at its
output. Its primary use is to capture strings so they can be later parsed by the ParseStr module. As each
string is captured, when the module encounters a carriage return/line feed character pair, it will issue a
trigger to signal subsequent modules that a new string has been received. Note that the port with which this
module interfaces must be set for mode 7, ASCII User. This mode prevents background software from
responding to user entries such as responses to menu prompts.

Inputs That Must be Constants:

e QOutput string max chars...integer that defines how much RAM is to be allocated for this module’s
string output. This number must be larger than the largest string this module is to receive, or else some
data will be lost from the string.

e Port #...integer in range of 1 to 2 specifying with which port on the board this module is to work.

Other Inputs:
e Trigger to clear buffer...status trigger input to reset input buffer. Generally used to resynchronize to
input signal stream.

Primary Outputs:

e OQOutput string...Name.Str...string having characters captured from port so far. Will be complete string
when trigger below is issued.

e New string trigger...Name.NewTrg...status trigger output true when complete string has been
received.

e New string length bytes...Name.Length...integer indicating length of newly output string in bytes.

e New character trigger...Name.CharTrig...trigger indicating that a new character has arrived in buffer.

e Characters in buffer...Name.Charcnt...integer indicating number of characters in buffer.

Outputs for Internal Use:
e Temporary string accum...Name.StrTemp...string being built from received characters.
e Temp string index...Name.IdxTemp...integer index into temporary string

Limitations: None

Expected Applications:
Use this module to accept characters from a port for use by other modules.

153

Software Modules

ParseString

The ParseString module reads characters from input string and parses fields into individual strings
and floating point outputs. If a header string is specified, then parsing to outputs will only occur if the
incoming string begins with a header that exactly matches the header string. If no header string is
specified, then all strings will be parsed. If a delimiter character is specified, then the parser will assume
that fields are separated by one delimiter character. If the delimiter is designated as the blank (<32>)
character, then multiple blank characters will be regarded as a single delimiter. If the delimiter is set to
zero, and an implied field length is specified, then the parser will not look for delimiter characters but will
instead assume that each field is exactly the length specified by the implied field length. The start index
offset specifies starting field #. For example, a start index of 5 means that the parser will only start parsing
and saving outputs after the 5" field.

Inputs That Must be Constants:
e OQOutput string max chars...integer setting the size of each output string.

Inputs for Internal Use:
e Set by compiler...integer set by compiler specifying type of parser.

Other Inputs:

e Trigger to convert...input status that enables module operation and conversion of input string. This is
usually the new string trigger output from the GetStringFromPort module.

e String to parse...input string to parse into individual strings and, if possible, floating point values.

e Delim char 44=comma...integer decimal equivalent of ASCII character that designates start of next
field.

e Start index offset...integer number of fields to skip before starting to parse outputs.

e Header string to find...string to find before starting to parse.

o Implied field length X...integer specifying field length for strings that have no delimiters.

Primary Outputs:

e Parsing done...Name.DunTrg...status trigger output indicating that a message was parsed.
e Field 1-10 string...Name.F1Str...string outputs after parsing

e Field 1-10 numeric...Name.F1Val...value of individual parsed strings.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used to pull values and other fields from serial strings.

154

Software Modules

ParseStringToFloat

The ParseStringToFloat module reads characters from input string and parses fields into individual
floating point outputs. If a header string is specified, then parsing to outputs will only occur if the
incoming string begins with a header that exactly matches the header string. If no header string is
specified, then all strings will be parsed. If a delimiter character is specified, then the parser will assume
that fields are separated by one delimiter character. If the delimiter is designated as the blank (<32>)
character, then multiple blank characters will be regarded as a single delimiter. If the delimiter is set to
zero, and an implied field length is specified, then the parser will not look for delimiter characters but will
instead assume that each field is exactly the length specified by the implied field length. The start index
offset specifies starting field #. For example, a start index of 5 means that the parser will only start parsing
and saving outputs after the 5" field.

Inputs That Must be Constants:
e Output string max chars...integer setting the size of each output string. Unused in this module...set to
Zero.

Inputs for Internal Use:
e Set by compiler...integer set by compiler specifying type of parser...leave blank.

Other Inputs:

e Trigger to convert...input status that enables module operation and conversion of input string.

e String to parse...input string to parse into individual floating point values.

e Delim char 44=comma...integer decimal equivalent of ASCII character that designates start of next
field.

e Start index offset...integer number of fields to skip before starting to parse outputs.

e Header string to find...string to find before starting to parse

o Implied field length X...integer specifying field length for strings that have no delimiters.

Primary Outputs:

e Parsing done...Name.DunTrg...status trigger output indicating that a message was parsed.
e Field 1-10 value...Name.F1Val...value of individual parsed strings.

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use to pull floating point values from serial strings.

155

Software Modules

ParseStringTolnt

The ParseStringTolnt module reads characters from input string and parses fields into individual
integer outputs. If a header string is specified, then parsing to outputs will only occur if the incoming
string begins with a header that exactly matches the header string. If no header string is specified, then all
strings will be parsed. If a delimiter character is specified, then the parser will assume that fields are
separated by one delimiter character. If the delimiter is designated as the blank (<32>) character, then
multiple blank characters will be regarded as a single delimiter. If the delimiter is set to zero, and an
implied field length is specified, then the parser will not look for delimiter characters but will instead
assume that each field is exactly the length specified by the implied field length. The start index offset
specifies starting field #. For example, a start index of 5 means that the parser will only start parsing and
saving outputs after the 5™ field.

Inputs That Must be Constants:
e Output string max chars...integer setting the size of each output string. Unused in this module...set to
ZETo.

Inputs for Internal Use:
e Set by compiler...integer set by compiler specifying type of parser...leave blank.

Other Inputs:

e Trigger to convert...input status that enables module operation and conversion of input string.

e String to parse...input string to parse into individual integer values.

e Delim char 44=comma...integer decimal equivalent of ASCII character that designates start of next
field.

e Start index offset...integer number of fields to skip before starting to parse outputs.

e Header string to find...string to find before starting to parse.

o Implied field length X...integer specifying field length for strings that have no delimiters.

Primary Outputs:

e Parsing done...Name.DunTrg...status trigger output indicating that a message was parsed.
e Field 1-10 value...Name.F1Val...value of individual parsed strings.

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use to pull integer values from serial strings.

156

Software Modules

ParseStringToStatus

The ParseStringToStatus module reads characters from input string and parses fields into
individual status outputs. If a header string is specified, then parsing to outputs will only occur if the
incoming string begins with a header that exactly matches the header string. If no header string is
specified, then all strings will be parsed. If a delimiter character is specified, then the parser will assume
that fields are separated by one delimiter character. If the delimiter is designated as the blank (<32>)
character, then multiple blank characters will be regarded as a single delimiter. If the delimiter is set to
zero, and an implied field length is specified, then the parser will not look for delimiter characters but will
instead assume that each field is exactly the length specified by the implied field length. The start index
offset specifies starting field #. For example, a start index of 5 means that the parser will only start parsing
and saving outputs after the 5" field.

Inputs That Must be Constants:
e Output string max chars...integer setting the size of each output string. Unused in this module...set to
ZETo0.

Inputs for Internal Use:
e Set by compiler...integer set by compiler specifying type of parser...leave blank.

Other Inputs:

e Trigger to convert...input status that enables module operation and conversion of input string.

e String to parse...input string to parse into individual status values.

e Delim char 44=comma...integer decimal equivalent of ASCII character that designates start of next
field.

e Start index offset...integer number of fields to skip before starting to parse outputs.

e Header string to find...string to find before starting to parse.

o Implied field length X...integer specifying field length for strings that have no delimiters.

Primary Outputs:

e Parsing done...Name.DunTrg...status trigger output indicating that a message was parsed.
e Field 1-10 value...Name.F1Val.. status value of individual parsed strings.

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use to pull status values from serial strings.

157

Software Modules

Poll

The Poll module is used to prepare and issue a poll message directed to a specific station address.
The poll will be sent on the modem/RS232 port using the protocol established by the communication setup
module above. Destination address, specific words to be transmitted, and forwarding path are established
by this module. A poll will be issued each time this module’s trigger input transitions from false to true.
Transitions that occur while the prior poll is still being transmitted will initiate a new transmission and
corrupt both transmissions. Once the poll trigger is received by this module, it will access the transmit
array for the port and destination station specified and prepare the outgoing poll, using words taken from
the transmit array, which it places in the port’s transmit buffer, ending with CRC security. It then enables
transmit interrupts to start the output timing and transmission process. When the message has been
transmitted, the interrupt software will turn off transmit interrupts and enable receive interrupts to capture
any reply. For systems involving only two stations, this module alone, properly triggered, is sufficient to
do polling. For larger systems, where round robin polling is required, it is recommended that you use the
SequenPoll module to control this module.

Setting Word Selections

Word settings establish which words in the specified transmit array are to be sent in the outgoing
poll; and how many words the reply message is to bring back from the destination station. Each word is a
16 bit integer. In the case of the RUGS3, a floating point value takes two words.

In the case of the RUGY protocol, the word selections work as you would expect. Specifically, the
“First word to send” specifies the first word in the transmit array to be sent in the message. The “Number
of words to send” specifies how many words from the transmit array will be sent. These are also true for
specifying which words the reply is to contain.

Setting Forwarding Path

The forwarding addresses enable you to specify up to three intermediary stations through which
the poll will be passed to get to a final destination. If you specify one or more forwarding addresses, the
message will be sent from the polling unit, to forwarding address 1, to forwarding address 2, to forwarding
address 3, then to the final destination. The destination’s reply will be returned back through the same path
in reverse order. Any forwarding address left blank, or set to a negative address will be skipped in the
forwarding path. If no forwarding is required, you can leave the forwarding addresses blank.

Inputs That Must be Constants: None

Other Inputs:

e Trigger input...status that, when going from false to true, causes the module to issue a poll.

e Destination station address...integer address in range of 1 through 255 designating destination station.

e First word to send...integer that, for RUG9Y protocol, specifies first word in transmit array to send in
poll.

e Number of words to send...integer that, for RUG9 protocol, specifies number of words to transmit
from transmit array. Max value for RUG3 is 125.

e First word to reply...integer that, for RUG9 protocol, specifies first word in transmit array at
destination to send in reply. Range is 0 through 65535.

e Number of words to reply...integer that, for RUG9 protocol, specifies number of words to transmit
from destination’s transmit array. Max value for RUG3 is 125.

o Forward station #1, #2, #3...integer in range of 1 through 255 that specifies addresses of stations who
are to forward the message to the next station in the path.

Primary Outputs: None

Outputs for Internal Use: None

158

Software Modules

Limitations:

Expected Applications:
Use to perform details of polling. Usually used in conjunction with SequenPoll module.

PollModbus

The PollIModbus module is used to issue polls to Modbus slave devices using the Modbus RTU
protocol. The poll will be sent on the designated port using the protocol established by the ComSetup
module above. Note that the protocol can be either Modbus RTU for serial communications directly with
slave devices including other RUG5/9 units; or Modbus TCP for communications with slaves over the
ethernet. Destination slave address, message type and specific words to be transmitted are established by
this module. A poll will be issued each time this module’s trigger input transitions from false to true.
Transitions that occur while the prior poll is still being transmitted will initiate a new transmission and
corrupt both transmissions. Once the poll trigger is received by this module, it will access the transmit
array for the port and destination station specified and prepare the outgoing poll, using words taken from
the transmit array, which it places in the port’s transmit buffer, ending with CRC security. It then enables
transmit interrupts to start the output timing and transmission process. After the message has been
transmitted, the interrupt software will turn off transmit interrupts and enable receive interrupts to capture
any reply. This module works for Modbus polling only. For RUG6 or RUG9 polling, use the Poll module.
For systems involving only two stations, this module alone, properly triggered, is sufficient to do polling.
For larger systems, where round robin polling is required, it is recommended that you use the SequenPoll
module to control this module.

Address offset range +/- 32767. MB item# + offset=R9 item#. For example: to read MB register
5039 and have it appear in Rugid register 10, first slave item to send/rcv should be 5039 and offset should
be -5029. To write register 9456 with data in Rugid register 3, first slave item to send/rcv should be 9456
and offset should be -9453.

Message Types Supported

The Modbus protocol uses a separate function code for each type of message. The PollModbus
module supports the following function codes/message types:

Table 6 Modbus Function Codes Supported

Function Code Use Items to Send/Rcv Refers to...
1 Read multiple coils Statuses
2 Read multiple status inputs Statuses
3 Read holding registers Words
4 Read input registers Words
5 Force coil Status
6 Preset register Word
15 Force multiple coils Statuses
16 Preset multiple registers Words

When you use the PollModbus module, you must specify which one of the message types above is to be
used in the poll. You can change the message type as necessary to support the polling you wish to do, or
you can have a different PollModbus module for each message type, and just trigger the one to issue the
poll. The easiest way is to use a table to control inputs to this module, and just sequence through the table.

Inputs That Must be Constants:
e Port#...integer in range of 1 to 2 specifying with which port this module is to work.

159

Software Modules

Other Inputs:

e Trigger to send...status that, when going from false to true, causes the module to issue a poll.

e Slave address...integer address in range of 1 through 255 designating destination station

e First item to send/rcv...integer that specifies first word in transmit array to send in poll. Range is 0
through 32767.

e Number of items to send/rcv...integer that specifies number of words to transmit from transmit array.
Max value is 125.

e Message type...integer specifying message type as identified in table above.

e Register/coil item # offset...integer that is added to the coil or register address before transmission of
polls referencing coils. Range is +/- 32767.

Primary Outputs: None
Outputs for Internal Use: None
Limitations: None

Expected Applications:
Used to perform details of polling.

QuiescentController

The quiescent controller provides the sequencing, logic and time delays to implement a report by
exception communications controller for a remote site. Its primary job is to monitor 16 statuses and latch
when any one or more change state. If a change is detected and the time delay has expired, the module will
assert its trigger output to cause a poll module to poll immediately. If the timer has not expired, the latch is
held until the timer times out, at which time the trigger is asserted, and the timer restarted. When the time
delay is restarted, it is initiated with the sum of a fixed part and a random part, to minimize the possibility
of synchronously blocking another quiescent station repetitively. In addition, if the module fails to obtain a
status that indicates that the poll had a reply, it will count such failures and, when the count exceeds a
blockage threshold, will double, then triple, etc., the time delay, to adjust to the level of activity of the
communication channel. When the module receives a reply, it steps down the blockage factor until normal
delays are restored. In this manner, the module will respond to excessive call blockages by slowing its
calling rate to minimize the possibility of the channel becoming clogged in times of high activity.

Inputs That Must be Constants: None

Other Inputs:

e RCV/Reset latch...status input that, when true, indicates that a message was received; i.e., a reply to
the last poll. This is usually obtained from the TrigOnRcv module.

e Mode (0-2)...integer specifying the sense of status changes to trigger transmission: O=any change,
1=0ff to on, 2=on to off.

e A fixed delay sec...integer fixed component of time delay where delay before next transmission
allowed=A-+B*rand().

e B random delay sec...integer random component of time delay where delay before next transmission
allowed=A-+B*rand().

e Max retries (O=forever)...integer number of times the module will retry a transmission before resetting
its change latch. Value of zero or blank will enable unlimited retries.

e Blockage thresh (0=none)...integer number of successive failed responses at which the time delay will
be stepped out by the blockage factor to slow transmissions.

160

Software Modules

o Trigger now #1 and #2...trigger to assert output trigger without delay and restart delay. This is
implemented to provide convenient manual transmission triggering.
e Input #1 through input #16.. .status inputs whose change is to cause transmission

Primary Outputs:

e Trigger output...Name.Trg...trigger output to poll module to cause poll to be issued.

e Latched changes...Name.Latch...status output indicating that a change has been detected, but the
module is waiting to transmit, or the module has transmitted with no reply, so is waiting to retry.

Outputs for Internal Use:

e Image...Name.Img...integer copy of last set of status inputs to watch for change.

e Timer...Name.Tmr...integer delay timer

e Retry counter...Name.Retries...integer retry counter

e Blockage counter...Name.Bcnt...integer counter of messages that have not received a reply (cleared
on reply).

e Blockage delay factor...Name.Bfactor...integer blockage step out factor to slow transmissions.

e Trigger end of retries...Name.RetryDone...trigger status indicating last retry has been tried.

Limitations: None

Expected Applications:
Use to control polling in remote sites that must report by exception.

SendAlertData

The SendAlertData module formats data taken from its inputs into the standard ALERT 4-byte
format and sends the data out the modem port using ALERT tones. When triggered, sends ID/data
combination pairs using the ALERT format. ID range is 0-8191, data value range is 0-2047. Each pair
results in a 4 byte ALERT standard message being sent to port 2. Up to 10 ID/data pairs can be defined to
constitute one transmission. Module will install data in buffer for transmission until it encounters a blank
ID or hits the end of the input list.

Inputs That Must be Constants: None

Other Inputs:

e Trigger input...status that when true initiates transmission immediately

e ID #1-10...integer ID numbers for up to 10 measurements being sent, range is 0-8191.
e Data #1-10...floating point data to be sent along with above ID’s. Range is 0-2047.

Primary Outputs: None
Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to format any data in RUG3 into ALERT format for acceptance by ALERT base stations.

161

Software Modules

SendStrtoPort

This module is used to create a string from set of input strings and floating point values. The
output string is assembled from the input values and strings in the order they appear in the module’s input
list. The output string can have its component elements separated by a user specified delimiter character.
Each of the module’s 20 inputs can be either a string or a floating point value. String inputs are assembled
into the output string unchanged. Numeric inputs are converted to strings with user defined precision
before being assembled into the output string. If a port number is specified, the string is sent to the
designated port for transmission, in addition to being emitted from this module as a string. Fields
embedded in string inputs of the form <nnn> will be converted to the ASCII equivalent character before
being sent to a port. E.g., the field '"ABCD<63>EFG' would result in the string 'ABCD?EFG' being sent.
Individual inputs can be strings of up to 40 characters.

Inputs That Must be Constants:

e QOutput string max chars...integer that defines the RAM to be allocated for the output string. Should be
longer than the longest string anticipated to be created by this module. If set to zero, the output string
will be suppressed.

e Port #...integer in range of 1 to 2 specifying with which port on the board this module is to work. If
left blank, the module will simply create the string as an output, but will not send it out a port.

Other Inputs:
e Trigger input...status trigger input that, when true, will cause the module to perform a new string
conversion.

e Mode flags...integer specifying prepending options: 0=no prepending, 1=prepend leading zeroes,
2=prepend leading blanks.

e Delim char (44=comma)...integer form of the desired delimiter character entered as the decimal
equivalent of an ASCII character. The following are commonly used characters as delimiters:
44=comma, 20=blank, 124=pipe. Leave blank if no delimiter is desired.

e Float format...floating point value to designate desired floating point format: [chars left of
decimal].[chars right of decimal]. For example, the value 5.3 would make the module format numeric
inputs with up to 5 characters to the left of the decimal and three characters to the right of the decimal.

e End char (10=CRLF)...integer form of the desired terminating character. A value of 10 gives the
CRLF character pair. Leave blank if no terminating character is desired.

e Input 1 through 20...either numeric or string inputs to be placed in order in the output string. Blank
inputs are ignored.

Primary Outputs:

e Output string...Name.Str...string produced by this module. This is the aggregate of all the inputs
converted as necessary to string form.

e String ready...Name.RdyTrg...status trigger output indicating that a new string is present on the
output.

o String sent/buffer empty...Name.SntTrg...status trigger output indicating that the port has finished
transmitting the string.

Outputs for Internal Use:
e Flag...Name.Flg...status output, internal general purpose flag
e Trigger image...Name.Img...status image of trigger input to watch for rising edge

Limitations: None

Expected Applications:
Use this module to prepare strings to send users, or to send to instruments that need ASCII string inputs.

162

Software Modules

SequenPoll

The SequenPoll module provides the logic, sequencing and timing necessary to implement round
robin polling, as a master would do in a purely polled telemetry system. With an extended time delay after
reply, it can also control infrequent polling used by the master in a quiescent system. The module’s main
task is to sequence through a series of remote site addresses, polling one after the other in the order
specified by its state counter. In a typical application, the module’s state counter output would be the
address of the polled station.

One State of a Typical Polling Cycle

To illustrate the operation of this module, here is a typical polling cycle:

e Advance the module state to the next state. If the state exceeds the max state input, preset the state to
the min state input value. If station on-line flag indicates off-line, keep advancing.

o Issue the com install trigger. This triggers a ComSetup module to initialize the serial port, if
necessary.

e Issue a poll trigger. This sends the poll message. Initialize the wait timer with the wait time to receive
input value.

e Waiting...If a reception detected, clear the com fail counter and start the wait after reception timer. If
wait timer times out without reception, increment the com fail counter. If com fail counter exceeds
com fail threshold, set com fail flag output.

e If done waiting, issue write trigger.

¢ Go to next cycle.

Inputs That Must be Constants: None

Other Inputs:

e Trig on Rev input...status indicating that a reception has resulted from the last poll. This usually is

obtained from a TriggerOnRcv module.

Enable...status input that, if blank or true, enables polling. If set to zero, polling is halted.

Preset trigger...status trigger input to force the sequencer to a known state.

Preset state...integer input of the state to assume when preset trigger is asserted.

Station on-line flag...status input: O=skip this station, 1=poll this station

Max state...integer setting the highest state for this module’s sequencer. After the sequencer hits this

state, it will transition to the min state, below.

Min state...integer setting the lowest or beginning state of the module’s sequencer.

e Poll delay after rcv sec...integer number of seconds the module is to wait after a reception before the
next poll

e Wait time for rcv sec...integer number of seconds the module is to wait for a reception before
declaring that the destination station has failed to reply.

e Station com fail count in...integer com fail entry...future.

e Poll count before com fail...integer number of polls in succession that fail to evoke a reply before the
module declares that communications with this station has failed...future.

Primary Outputs:

e Sequencer state...Name.State...integer state of main sequencer. This can be sent to the Poll module as
the station address.

e Poll trigger...Name.PolTrg...status trigger output sent to the Poll module to issue one poll.

e Write table trigger...Name.Wtrig. . .status trigger output...future.

e Com install trigger...Name.InstTrig...status trigger output used to trigger installation of the serial port
parameters (triggers ComSetup module).

e Com fail count out...Name.Comcnt...integer count of how many unsuccessful polls have been issued
since last successful poll...future.

o Com fail flag...Name.Fail...status: 0=com ok, 1=com failed...future

163

Software Modules

Outputs for Internal Use:

e Subsequence counter...Name.Sub...integer state counter used to control module sequencing for each
poll.

e Timer...Name.Tmr...timer for internal sequencing, waiting for reception, etc.

Limitations: None

Expected Applications:
Use in all but the simplest applications to control round robin poll sequencing.

StringMid

When triggered, reads characters from the input string and emits a substring beginning with 1st
character # specified and ending when it has emitted the specified number of characters or has hit the end
of the string. Len output is length in characters of incoming string. Leftmost character of incoming string
is character # 0. You MUST enter a constant for the output string max character length larger than your
largest anticipated output string. To obtain leftmost N characters, set 1st char to emit to 0, and number of
characters to emit to N. To obtain rightmost characters starting with character N, set 1st char to emit to N,
and number of chars to emit to a number greater than anticipated string length (such as 1000).

Inputs That Must be Constants:

e Output string max chars...integer that defines the RAM to be allocated for the output string. Should be
longer than the longest string anticipated to be created by this module. If set to zero, the output string
will be suppressed.

Other Inputs:

e Trigger to convert...status input that when true will cause the module to read the input string and
output the specified output string.

e 1% char # to emit...integer that specifies with which input character the output string is to begin. If set
to zero, the output string will begin with the first character of the input string.

e Number of chars to emit...integer that specifies how many input characters are to be emitted. If set to
a larger number than the length of the input string, then all characters to the end of the string will be
emitted.

Primary Outputs:

e Conversion done...Name.DunTrg.. .status trigger indicating that a new conversion has been completed

e Length of input string...Name.Len...integer indicating number of characters in input string.

e Substring...Name.SubStr...string output of portion of input string.

e Length of output string...Name.LenOut...integer indicating length of substring extracted from input
string.

e Ascii of first output char...Name.Asc...integer ASCII equivalent of first output character.

[]

Outputs for Internal Use: None

Limitations: None

Expected Applications:
Use to extract a portion of an incoming string.

164

Software Modules

TriggerOnRCV

The trigger on receive module will issue a trigger each time a formatted message is received with
correct CRC on the designated port and having the addresses specified. This module is useful for
triggering a poll immediately after a reception, for collecting communications statistics, for notifying the
operator of a reception, or for general purpose debugging of communications performance. The module’s
outputs are valid immediately after the reception. Trigger event output is true for one scan after the
reception. Source and destination address outputs show the source and destination of any message received
on the designated port with valid CRC, and remain valid until overwritten by another reception. They are
not dependent upon the source and destination address input specifications of this module.

Inputs That Must be Constants:
e Portto RCV...integer in range of 1 to 2 specifying with which port on the board this module is to
work.

Other Inputs:

e Address of source...integer address of source station from which transmission is to cause a trigger.
Leaving this entry blank will cause the module to issue a trigger on any transmission received by the
destination address.

e Address of destination...integer address of message destination to which a transmission is to cause a
trigger. Leaving this entry blank will cause the module to issue a trigger on any reception from the
source address.

Primary Outputs:

e Trigger event output...Name.Trigger...status trigger that becomes true when a message is received on
the port and board specified, and having the source and destination addresses specified.

e RCVed source address...Name.Src...integer address of last received message on the specified board
and port.

e RCVed destination addr...Name.Dest...integer address of last received message on the specified board
and port.

Outputs for Internal Use: None
Limitations: None

Expected Applications:
Use to show evidence of reception.

165

Software Modules

166

Displays, Ladder

CHAPTER 6...DISPLAYS, LADDER

Display Definition

Displays for the RUG3 are defined a screen or page at a time by typing them in the Display/Report
Editor page within the R3SETUP program. Displays can be defined for either of the serial ports (port 1 and
port 2) and for the local LCD display (port 0). Displays are independent for each port; i.e., displays
designated for one port are not accessible on another port and do not effect any display being shown on
another port. Along with the display text, you will enter a name for the display that will become a menu
entry when run on the RUG3 so an operator can access the display. You will also define to which port the
display applies. Finally, where you wish the RUG3 to present variable data such as flow rate, tank level,
etc. on the display or report, you will drag in the name of the measurement to a table that holds references
to variable data for each line of the display. In the following sections, we will describe the process of
defining displays.

Selecting a Display to Edit

To select a display to edit or to define a new display, first select the ‘Display’ tab in the R3
Module Library. You should see the display tab expand to look as shown below. At this point, if you wish
to define a new display, you would press the ‘New Display’ button. To edit an existing display, first select
one of the named display titles in the ‘Displays in Project’ window and then press the ‘Edit Display’ button.
If you wish to delete a display from the project, select the display name from the list and then press the
‘Delete Display’ button. Once you press a button to edit or define a display, the system will present the
display definition page illustrated below.

167

Displays, Ladder

A3 MODLLE LIERARY

M ath] Cantral] Statistics]
Commun. | BASIC | Ladder | Tables |

[0 + Sypstem]

Dizplays in project;

D Mew Display E‘lc-:itr‘%”
[EditDisplay | |Fort1..

MainS erial
E‘ Celete Dzp

Figure 51 Display Selection Panel

Dizplay/Feport Editor

Diigplay title for menus'MainSE”al O5SP Part: 1T = —D Save
Dizplay text..use @0E.(2 where variable data should appear. pepg |0 2 ¥ Cancel

xxx MAIN SERIAL *** |lpdate trigger:

|Five5 ec. Trig
T = T 0 N N 0 D e A T e

Figure 52 Display/Report Definition Panel

168

ATl: Rawy=0@@@@ Avg=00@@T3 Latch=0@@od
AlZ . Raw=@@@@@ Avg=@@@dd ILatch=o@@o ‘Yanables on zelected line:
AT3: Raw=0@@@@ Avg=00@@@ Latch=0@@od &1 Baw
AT4: Ray=0@@@@ Avg=00@@@ Latch=0@@@a ﬁN§M1Hawﬂvg
ATS: Raw=0@@@@ Avg=0030@@ Latch=0@@og ﬂvgN1HawLamh
AlG: Rawy=0@@@@ Avg=@0@@@ Latch=0@@od 4
BatV:Ray=0@@@@ Avg=00@@@ ILatch=0@@od 5
Tenp: Raw=0@@@@ Avg=@00@@ Iztch=o@@oo E
Tap: Raw=0@@@@ Avg=@@@@@ Iatch=o@Eo 2
Bu=V H10=o@@ma a
La=st tap=0@@ Tap read=o@d@ 5

10

Displays, Ladder

Naming the Display

The display will always be referenced by a name you give it in the ‘Display title for menus’ field.
In the example above, the display name is ‘MainSerial’. The name ‘MainSerial” will appear in the RUG3’s
display selection menu for an operator to use to reference this display. It will also appear in the display list
when you click the display tab in the R3SETUP module library to enable you to return to the display to edit
it. When you enter the screen shown above, the cursor will rest in the display name field. For new
displays, you should be sure to enter a unique name for each display before attempting to save the display.

Numbering the Display

To the right of the display name is the display number and port number assigned to this display.
The display number sets the order in which the display names will appear in any lists or menus on the
designated port. Display zero will be the first shown on any list, display 1 will be next, etc. You can
change the display numbers at any time to control the order in which displays are accessed by operators as
they scan down through them using the RUG3 [ENTER] key. If you have displays with duplicate numbers
or the list of displays is missing a number, the compiler will complain and will not allow the program to
load.

Setting Display Port Assignment

The port number specifies which port in the RUG3 the display will use. In the RUG3, there is a
separate display list for each port for which any display has been defined. An operator can access displays
on any port independently of the displays being shown on any other port. The table below specifies the
port numbers assigned to ports in the RUG3. Note that displays will not be sent to any port not in ASCII
mode. The mode is set using a ComSetup module. Port 1, the programming port defaults to 9600,N,8,1,
ASCII mode.

169

Displays, Ladder

Table 7 RUG3 Port Assignments

Port 0 LCD Display
Port 1 Programming serial port
Port 2 Modem/RS232 port

Setting Display Trigger

The display trigger enables you to specify the update interval or event trigger to update each
display. You must specify a trigger or the display will never update after being initially accessed by an
operator. The trigger can be any status from the status database. To specify a status to act as a display
update trigger, simply drag the entry from the status database and drop it into the Update Trigger field. In
the above example, ‘FiveSec.Trig’ is the trigger. It causes the display to update once each five seconds.
It’s best to use triggers here rather than statuses that may be true constantly because as long as a status is
true, it would cause the display to be rewritten every scan, wasting time on unnecessary display updates.
Another example would be triggering displays that show received telemetry data. Here, it would be good
to use the “.Trig’ output of a “TrigOnRcv’ module, since then the display would update immediately after
the reception of telemetry data and only then. For displays directed to serial ports, its best to use a trigger
less frequently than once per second because the display will scroll up before the operator can read it. We
find that the 5 second update, as in the example above, works well.

Entering the Display Text

The large window to the left of the trigger window is the area where you type the text you wish to
display on the RUG3’s LCD, or to transmit to a serial port. Once you position your cursor into that
window, you may type whatever you wish to display. You may move your cursor using the mouse and
delete or insert text at will. There are no limitations on what you type except that the ‘@’ symbol is used to
specify the position and format of active data fields as described below. In the case of sending displays to
serial ports for display on monitors, you may want to enter more data than the display window can show.
Typically, a monitor will be able to show 80 characters by 25 lines, and a printed page can show 80
characters by 66 lines. This is not a problem. Simply type in longer lines as necessary and use the arrow
keys to position left and right along the line. Also, you can enter up to 100 lines in a single RUG3 display.

170

Displays, Ladder

Specifying Variable Data Fields

Wherever you wish the RUG3 to show dynamic variable data such as tank level, pump starts, flow
rate, etc., you must use ‘@’ symbols to indicate the location and format of the area where you wish the data
to be presented. For example, if you wish for the RUG3 to show an integer as a three digit field on a line,
you would type ‘@@@’ where the value is to appear on the line. If you wish to show a floating point
value with 5 places to the left of the decimal and 3 places to the right, you would type ‘@@@@@.@@@’
where that value is to appear on the line. When the compiler encounters ‘@’ symbols as it scans each line,
it reserves exactly the space you specified for variable data to appear, and will format the measurement to
occupy the space you have specified, left justified. After you have formatted each line, you must specify a
variable to be presented in each ‘@@@@’ type field you have entered on the line. You do that in the
small window to the right of the large display window that contains your text. It is labeled ‘Variables on
selected line’ and contains 10 rows where you can drag and drop up to 10 variables from the data bases that
you wish to be displayed in the ‘@’-fields on the presently selected line. In the example above, the cursor
rests on line 4, which is “All: Raw=@@@@@ Avg=@@@@@ Latch=-@@@@@”. This line has three
variable fields, one for AI1’s raw count (‘@@@@@’), one for All’s average value (‘@@@@@’) and
one for All’s latched value (‘@@@@@’). Therefore, it needs three variables specified in the ‘Variables
on selected line” window. As you can see, the three variables that were dragged in for this line are
‘All.Raw’, ‘AvgAllRaw.Avg’ and ‘AvgAllRaw.Latch’. The remaining entries 4 through 10 in the
variables list simply have numeric place holders. As the compiler scans each display line left to right, it
uses variables from the variables window from the top down. You do not have to worry about the choice of
floating point, integer, status and string variable types. The compiler will format the referenced variable
data to display properly in the ‘@@@@’ format specification. Variables or strings whose lengths are too
long to display in the designated space will be presented as ‘##### fields, indicating overflow. Fields of
‘@’ characters for which you have not assigned variables will be displayed with ‘----° characters to
differentiate those fields from over range fields.

Special @ Fields

The ‘@’ character is used to specify location and format of variable value presentation, and to
specify insertion of special characters and alternate display methods such as trends. The table below
defines all the special uses of the ‘@’ fields:

Table 8 List of '@' Field Uses

Field in Display Meaning Where Applicable
@@@@.@@@ Show value with that format LCD, serial port
@F Insert form feed Serial port

Saving the Display

After you have finished formatting a display, click the ‘Save’ button to save it. If you do not wish
to save your changes, click the ‘Cancel’ button to abandon it.

171

Displays, Ladder

Ladder Logic

The RUG3 contains a complete ladder logic facility whereby simulated contacts and relay coils
can be interconnected to produce custom logic. The contacts can be any statuses in the status database; and
the coils constitute new statuses that are placed into the status database when defined. Contacts can be
regarded as normally open or normally closed. Each coil has a call time delay and separate off time delay.
You specify the ladder logic by basically drawing its schematic. To do that, you click on the ‘Ladder’ tab
in the R3 Module Library. The following design page would then appear.

~Ladder Edito -
Inzert Row ”: |
Delete Row -”- - ‘ -* -'-‘ - ‘ I ‘ X
CellName On: |CelOnDelay of: |Cel0ffDelay

|

Figure 53 Ladder Editor Initial Panel
Specifying Ladder Logic Schematics

Above, a blank schematic is shown. At the top of the schematic grid are nine buttons with
schematic icons on them. Once you click on any of these buttons, it becomes the selected button.
Thereafter, wherever you click in the schematic page, the selected schematic item will appear. Each row,
or ‘rung’ of the ladder can have eight entries, the rightmost of which must either be blank or have a coil in
it. Contacts on the same row are ‘anded’ together; contacts connected vertically are ‘ored’ together. For
example, say we wish to turn on a coil whenever PmpActrl.Call and PmpBCtrl.Call and PmpCCtrl.Call are
all on, or whenever PmpDCitrl.Call is on. To do this we would need the following ladder logic schematic
which we produce by selecting schematic icons and dropping them onto the schematic page. For each
normally open or normally closed contact that we include, we must drag a status point from the status
database and drop it onto the contact.

172

Displays, Ladder

—Ladder Editor
Inzert Fow IF
Delete Raow -Il-l |-O-| ‘-* |-'-‘-I ‘ I X |
I On: I ff: I
FPmo l;trI.I:aII F'mnl.:liqul.l:all F"mnqqul.liall ™
4| 11 11 ' W
PmoDTtl Cal | '

=

Here, our schematic created a coil that we named ‘PxCoil.Coil’, which now appears in the status database.
It can be used by any module including any rungs of our ladder diagram. Note that it is not automatically
connected to any physical relay. To have this coil control a relay, we would have to connect it as the
control input of a digital output relay module.

Specifying Coil Name and Delays

When we drop a coil at the right end of our schematic we are presented with a screen where we
can specify the name of the coil (we used PxCoil and the system added the .coil’ appendage), and the ON
and OFF delays as shown below.

—Enter Coil Tag Mame

X|

! Tupe in unique tag name for this coil: IP”E':'”-E':'“
Type in number or drag in tum ON delay, sec. |3'5
1
[27

Tupe in number ar drag in turm OFF delay, sec.

Figure 54 Coil Name and Delay Specification Page

Generally, you will leave the delays at zero, but you can have both call and off delays with ranges of 32767
seconds and resolutions of 1 second. After we name the coil and set its delays, if any, the coil is added to

173

Displays, Ladder

the status database. Note that you may use constants, as in the example above, or variables such as
setpoints from a database for the time delays.

174

Communications

CHAPTER 7...COMMUNICATIONS

Introduction

The RUG3 provides a complete set of protocols to securely retrieve field data, send control data to remote
sites, and interface with virtually all SCADA software packages. RUG3 communications hardware and software are
compatible with both radio and phone line channels; serial RS232 channels; leased line, customer-owned lines; and
virtually all types of radios including audio types, radios with built in modems, and spread spectrum radios.
R3SETUP enables you to define telemetry formats that you need to accomplish fast, efficient communications. All
protocols except ASCII include CRC-16 security, so you can be assured that if a message is accepted by the RUGS3,
the data contained in the message is intact; any messages with errors are rejected entirely. This chapter discusses
telemetry design methodology, communications module setup, array setup, and other aspects of communication
design.

Overall Communications Design Methodology

This section is intended to assist in selecting the correct modules, communications hardware, and array
setups. Basically, the job of designing a communication system is to first establish what data are to be sent between
the various stations at what speed. Then decide the channel characteristics and, thereby the necessary RUG3
hardware. Finally, choose the software modules and array setups that will accomplish the required communications
over the channel.

Communications

RUGS9 protocol Basics

Normally, for unit to unit communications, you will use the RUG9Y protocol. It is presented in detail later
in this chapter, but some explanation is necessary before we proceed with the following sections. The RUG9
protocol uses a variable length message that includes data within both the initiating message (the poll) and the reply
message. The messages contain the addresses of both the initiating station and the destination. Each station in a
system must have a unique address in the range of 1 through 65535. Address 0 is reserved for broadcast use.
Typically, an initiating station will send a poll containing data intended for the destination station. If the destination
station receives the poll intact, it will always reply to confirm that it received the message. If the initiating station
fails to obtain a response to its poll, it will assume the poll did not get through, even though it can happen that the
poll was received intact but the reply was corrupted. Usually, if enough polls in succession fail to result in
successful reply receptions, the initiating station will declare a communications failure. Only the addressed
destination station is allowed to reply to a poll. However, other stations can listen in and extract data from both the
poll and the reply. Data included in any transmitted message are obtained from the station’s transmit array and
inserted in the outgoing message, whether it is a poll or a reply. Data received by a station will appear in its receive
array if the received message contained no errors. If the received message had an error, no data will be accepted
from it.

System Types: Polled, Report by Exception (Quiescent) and Peer to Peer

There are three main variants of system communications topology; and the RUG3 supports them all as well
as various combinations. Which type you design into your system depends on the number of RTU’s in your system,
the need for them to communicate among themselves, and the system reporting speed requirements. The three types
are:

e Polled system...system where the master site polls each RTU in turn, and RTU’s do not need to communicate
directly with each other. Each RTU must wait its turn to report data.

e Report by exception (quiescent) system...system wherein RTU’s decide when to report to the master based on
changes in analog values, alarms, etc. Each RTU reports as soon as a change is detected.

e Peer to peer...report by exception system wherein RTU’s communicate directly with each other as well as with
a master. Can function without a master site.

Of the above systems, the polled system is the simplest. In it, the master polls RTU’s in a round robin fashion
continuously. Polling is easy to set up, and the RTU’s simply have to reply to the polls. The polled system is also
the slowest to report changes. This is because that since the master polls all RTU’s in turn, an alarm that occurs just
after an RTU has been polled must wait for the rest of the RTU’s to be polled before the alarm is reported. Our rule
of thumb is that systems of more than 10 to 15 RTU’s should consider a quiescent system.

With a quiescent system, RTU’s report only when they detect a change. In this case, the communication
channel is nominally quiet except for the occasional report. Since each RTU can report as soon as it detects a
change, alarms are reported immediately. The quiescent system usually includes occasional polling by the master
site to detect communications failures. Of course, two RTU’s can decide to report simultaneously. In that case
neither message gets through to the master so the RTU’s must repeat their polls. For this reason, the RUG3
quiescent polling controller includes a random time delay on repeat messages to avoid synchronous blocking.

Finally, the peer to peer system is a variant of the quiescent system that includes direct RTU to RTU
communications. In this case, the master site is not necessary to normal system operation; but is required to install
changes to setpoints from a SCADA system, as well as to provide visibility of system operation, and detection of
communications failure using infrequent polling.

The figure below illustrates the three types discussed.

176

Communications

7

pEEEENEEm DNEEREEE
EEEEEEEE EEEEEEEE] o
. RTU-2
RTU-5 \ DEEEEEEE
EEEEEEELE

RTU-3

o@m@

a=a [

oo@

oo@ 4 OooooooE

= [o o
MASTER-1 RTU-4

POLLED SYSTEM

[

DoponEE@dmEm
OoponEEEm

RTU-5 InEEEEEm
[o s e o
RTU-3
ooe
EEE [
oEn | o
ooe | € » DDEDEDOE
= g [SfsySIsIsIs)S]|
MASTER-1 RTU-4

QUIESCENT REPORT BY EXCEPTION SYSTEM

s | e o

OpopEEE@m
OpppnEEEm

oppoEoED@E
OooonEEEom

[

DEpEDEDEEmE
oDooooEEE

RTU-3

s

DopDEEEmEm
DopDEEEE

MASTER-1 RTU-4

PEER TO PEER SYSTEM

Figure 55 Ilustration of Three Main Communication System Types

177

Communications

Establishing Data Transfer Requirements and System Type

To establish the system’s data transfer requirements, you must first list all signals that need to be sent from
all sites to any other sites. This is called the Tag List. Usually, a system will require that field data and statuses be
sent to a master site, and master setpoints and control bits be sent to the remote sites. For each site you must list
data to be transmitted from the site to the master; and then list data to be received at the remote site from the master.
Assume that status bits are packed into 16 bit words (i.e., 16 or fewer statuses per word), and that each analog value
requires one 16 bit word. Then add up how many words must be sent from the remote site to the master, and how
many must be sent from the master to each remote. From that compilation, we can estimate the communications
times and assign data to your transmit and receive arrays. For example, suppose we are designing a simple system
consisting of a single tank site, a single pumping site and a master site. The tank level must be sent to the pumping
station so it can decide when to turn on and turn off its pump. Assume the master controls all polling, and that the
sites communicate only with the master and not with each other directly. Therefore, a polled system will apply. The
following table illustrates the data that must be passed between each site and the master:

Table 9 Sample Telemetry Tag List

Word Master to Tank Site Tank Site to Master Master to Pump Site | Pump Site to Master

1 e Spare statuses e High alarm status e Spare statuses e Pump call status
e Low alarm status e Pump run status
e Power fail status e Pump fail status

e Power fail status

2 Tank low alarm SP Tank level Pump HOA command Pump total starts

3 Tank high alarm SP Battery voltage Pump call SP Pump total run time

4 Pump off SP Battery voltage

5 Tank level Flow

6 Total flow

Total Wds | 3 3 5 6

The above table constitutes a tag list for this simple system. We are interested in estimating the time the master
would take to transmit and receive from both stations, i.e., the polling cycle time. That time can be estimated from
the following equation:

Time per each leg of message = acquisition time + 20* (4 + number of data words)/(baud rate)

If we assume a radio system with 300 baud data rate, and a transmit delay for acquisition of 0.75 sec., then the cycle
time of the above system would be:

Master to tank site: 1.22 sec.
Tank site to master: 1.22 sec.
Master to pump site: 1.35 sec.
Pump site to master: 1.42 sec.
Total cycle time: 5.21 sec.

As long as the system is small, say less than 10 remotes, the polled approach will probably work. However, for
larger systems, the polled system becomes slow. To illustrate, assume the system consists of 50 remotes sending
and receiving 25 data words each message. At 300 baud, the polling time, using the above equation becomes:
Time per each leg of message = .75 + 20 * (4 + 25) / 300 = 2.68 seconds

For 50 remotes with 2 legs each, the cycle time becomes 2.68 * 100 = 268 seconds.

178

Communications

To provide faster reporting, consider using the report by exception, or quiescent system. With that approach, alarms
and other changes will be reported in less than a second.

Store and Forward

If you are implementing a radio system in mountainous terrain, you may have some stations not in line of
site with one or more stations with which they need to talk. If the station that is out of sight is accessible from
another RTU, then that intermediary RTU can be used to relay messages using a technique called store and forward.
Basically, store and forward simply means that a station will store a message, test it, and then relay it forward if it
sees that it is not itself the destination, and its address is next in the message’s imbedded forwarding path. As an
example, the figure below indicates that RTU-3 is not visible to the master site. This figure is the same as the figure
above, except that links between the master and RTU-3 have been omitted because they are blocked by terrain. In
that case, polls from the master can be routed through RTU-2. In the RUG3 communications implementation, the
initiating station specifies the path the message is to take to its destination. That path is specified in the message so
the reply can return along the same path. You specify the path in the Poll module using up to three forwarding
entries. Therefore, in addition to the source and destination addresses, you can specify up to three intermediary
stations the message can use to relay out to a distant site.

179

Communications

I

O

IEEEDEDE

oppEEOEEmEm
IEEEEEEE
RTU-2
RTU-5 Ril-2
RiIU-2 > <
%
- E
o
<
D it
[-2-1-]
EEE
EEE _— S S —
CEL B
MASTER-1
POLLED SYSTEM
] 1
v
SoEmEEEm SemEmanm :
RTU-5 > RTU-2
. «
&
N
« »
ERE
EEE
EEE
[::::} Egg o = - —
[

MASTER-1

poEEEEEm b S

EEEE

]
EEEEE
T

QUIESCENT REPORT BY EXCEPTION SYSTEM

[<

EEDEEEEE
INoPEERE

RTU-5 >

IEEEE

smERE
lzzass

MASTER-1

PEER TO PEER SYSTEM

—/

EEEEEEEmE
IENEENEEmE

RTU-3

Figure 56 System Types Using Store

and Forwarding to RTU-3

180

Communications

Protocols Supported

The RUG3 operating system provides complete communications services for its two serial ports. All
communications are secured with appended CRC16 codes except for ASCII, which uses no security. The RUG3
supports the following protocols. A port’s protocol is specified in the unit’s ComSetup module for that port.

Table 10 Protocols Supported

PROTOCOL WHEN TO USE
ASCII Use for ASCII com when you want RUG3 menu services supported
RUG9 Use to communicate with other RUG3’s, RUG5’s and RUG9’s
RUG6 Use to communicate with older RUG6’s, RUG7’s and RUGS’s
MODBUS MASTER Use to poll other slave units

MODBUS RTU SLAVE Use as slave to Modbus master when Rcv and Tx arrays are to be kept separate

MODBUS RTU SLAVE 2 | Use as slave to Modbus master when Rcv array to be used as read/write holding
registers as well as I/O receive registers

ASCII 2 Use for ASCII com when you don’t want RUG3 menu services interfering

ALERT Use to be compatible with the ALERT weather/flood warning system

True Wireless Use in proprietary industrial applications

Modbus TCP slave Use to implement Modbus slave for Ethernet communications

Modbus TCP slave 2 Use as slave to Modbus master for Ethernet communications when Rev array to be
used as read/write holding registers as well as I/O receive registers

Modbus TCP master Use to poll Modbus slave devices over Ethernet

All messages except for ASCII and ALERT employ a poll and reply dialogue whereby one station transmits a poll
and the addressed station replies. The RUG3 can be either the polling station or the replying station, or both. It can
therefore be used in polled systems or quiescent report by exception systems. The RUG3 also supports store and
forward operation when using RUG9 or RUG6 protocols. In those cases, the forwarding path is set by the polling
station with all succeeding communications based upon the forwarding path imbedded in the message. The RUG9
protocol supports up to 3 intermediary stations.

Setting Up Ports and Communications Arrays

Port Setup

Before any port will function normally, it must be initialized with baud rate, buffer size, pointers, etc. You
do this with a ComSetup module as illustrated below. The setup shown is typical for radio applications. It would
be installed right after boot up since the installation trigger is taken from a “System.bootTrg” module. In the case of
units doing polling using the SequenPoll module, the SequenPoll module installs the ComSetup module just before
each poll. Most commonly, you would use constants for inputs as in the example. However, you can use the
outputs of other modules, such as setpoints, as inputs to this module except for the port designator, which must be a
constant. For example, you could use a setpoint module as the baud rate input so the operator could adjust the
channel baud rate. You may have as many ComSetup modules as you wish in your project. Whichever one
executes last for a given port governs the port’s setup. Note that since each port in a unit can have a different setup,
each port can have a different address; or the ports can have the same address...they are treated independently by the
RUGS3 operating system.

181

Communications

Module Type: ComSetup

Fodule name, this instance: |MDdEmSetup —D Save | x Caticel |
Toggle DescréM -:utes|
Dezcnption: Text: |E

Trigger to inztall etz all parameters and resynchronizes port. Ward length iz always 8 bits with 1 stop bit.
Baud: 50-56,000; Party: O=none,2=o0dd 3=even; Mode:1=ASC 2=R19, 3=RE 4=k odbuz slave, B=todbuz
glave mode 2, 7=05Cuzer, 8=4LERT A=T%/ ‘#hen uzing modem, baud rate can only be 300 baud; tone
uze is 22t for low tones [FE.RI mode], or ALERT tones [ALERT mode). Tedelay zets delay after keying
transmitter before data iz zent. Range iz 0-285 [or 0-25.5 sec.]. T+ amplitude zetz transmitter amplitude.

Inputz and congtants: COutputs to Data Baszes:

[term; Wal Azsigned: [term; Mame in D atabase:
Port (1.2 2 Receive in Droaress b odemSetup. Fx
Trioger ko ingtall setun Swstem. BootTrg Transmit in Droaress

Q=232 1=tdm. 2=485 1

B aud 50-56.0001 300

Parity [0.2 21 1]

Address [1-255] 2

Mode 123467851

T delav. tenthz of zec K

T amolitude [0-255] 128

Com buffer # butes 150

Figure 57 Typical Modem Setup for Radio Applications

Array Setup

While the ComSetup module described above establishes the port communications parameters, you still
need to establish what data is to be transmitted and how received data are to be interpreted. To do this, you must
select the communications tab in the R3 module library, and then select either “RX Array Setup” or “TX Array
Setup”. Note that you must set up one transmit array and one receive array for each station with which this RTU is
to communicate. If you wish for this RTU to capture data as it is being transferred from one RTU to another, and
neither has the same address as this one, then you only need to set up the receive array in this RTU, using the source
and destination addresses of the two RTUs whose data you wish to capture.

Transmit Array Setup

After you click the “New TX Array” button from the communications module tab, you will be presented
with the following screen, which will enable you to establish the transmit format for one destination address on one
port. The first thing you should do after this screen is presented is set the port number and destination address that
you wish to define. You do that by clicking the up or down arrows in the spin edit boxes for port and destination
address. If you have previously defined a format for a selected combination of port and destination address, then it
will be presented in the large window in the center of the screen for you to modify. Otherwise, a blank format will
be presented. In the example screen below, the format is being defined for transmitting to station address 1 on port
2.

182

Communications

T drray Setup...

—DSave | x Cancel |

TLM Array Entries:

wid |Bit |Name | Mult [Tume |,

Destddr: (255 for self] |1 =
Part #: IEI

o | Clear Cel

Add/Delete Row
Add Bow | Delete Raow

{« |nteger-16 bit
" Statuz-16 bit
" Float-32 bit

Cell Humbering
* BE..F9 Mumbering

" Maodbus Numbering < »
" DMP3 Mumbering

Figure 58 Initial TX Array Setup Screen

Adding and Deleting Rows

You will need a row for each signal you wish to place in the telemetry format. To add a row to the format
in the large window, select the type of entry you wish to add (integer-16 bit, status-16 bit or float-32 bit) by clicking
one of the radio buttons in the “Add/Delete Row” box in the screen’s lower left hand corner. Then, each time you
click the “Add Row” button, a new row of the type you selected will be added to the format, just above the selected
row in the large window. One row will be added for each click except for the case of adding a status word, in which
case 16 rows will be added, one for each status bit in a 16 bit word. For each row you add to the format, the system
will show you the word number, bit number (if status), and type (integer, status...). It will also provide space for
you to specify the name of measurement to be sent and its multiplier, if any. To delete a row, simply select the row
in the large format window and click on the “Delete Row” button.

183

Communications

Specifying Measurement to Send

You design the transmit telemetry format by dragging the name of the measurement from one of the data
bases, and dropping it into the “Name” cell of the word you wish it to occupy in the formatted message. You can
drag and drop from any of the databases except the string or TX databases. As shown in the screen presented below,
the variable “Al6.0ut” was dragged from the floating point database and will be sent in the seventh word of the
format as a 16 bit integer after being multiplied by 100. The multiplier is used to enable floating point values to be
passed as integers while preserving places to the right of the decimal. Notice that in this example, we have dragged
a floating point variable from the floating point data base and dropped it into an integer cell. When it is time to
transmit this format, the RUG3 operating system will fetch the floating point tank level measurement from the
floating point data base, multiply it by the specified multiplier (100.0 in this case), convert to integer, range limit to -
32767 to +32768 and save in the output buffer for transmission. Other variables are dropped into other words and
specified to be multiplied by other factors. If you do not need to multiply a value to preserve fractional parts, you
can leave the multiplier blank or set it to 1.0.

T# Aray Setup...
TLHM Array Entries;
—D Save | x Cancel |

wid |Bit |Mame It [Twpe ~

1 4 Di4.01 Status

1] DIA.0I Status

1 G DIE.DI Status

1 v DI7.0l Status

DestAddr (255 for self)]| 2] 1 g DIg.DI gi:iﬂz

1 10 Statuz

1 11 Statuz

—r 1 12 Statuz

Special Field | Clear Cell 1 13 Status

1 14 Statuz

Add/Delete Row 1 15 Statuz

Add Bow | Delete Raov 1 16 Status

2 - Al1.0ut 100.0 Integer

& Integer-16 bit] A2 Out 100.0 |nteqer

® SlEi (3 : A4 0 1060 e

] .Ou : nteqer

L_Fhloatazi 5 A15.0ut 1000 Integer

K Al Out 100.0 |nteqer

Cell Numbefing a Syghem. B athy 100.0 |nteger

= BE. F9 Numberin) Svetem. TempF 100 |nteger
g 10 [

" Modbus Numbering F 5

Figure 59 Example TX Array with Variables Installed

184

Communications

SPECIFYING A MULTIPLIER

The multiplier is used to change the range of a floating point variable so that it can be sent as a 16 bit
integer. For example, a tank level of 0 to 20.0 feet, if sent without a multiplier, would only give one foot resolution
at reception by the receiving station. To preserve better resolution, it is desirable to multiply the measurement by a
factor of 10 or 100 before transmission, then divide it by that same factor on reception. For example, if our tank
level is 14.5678 feet and we multiply by 100 on transmission and by 0.01 on reception, then our received level
would be 14.56 feet, preserving 1/100 foot resolution. You must be careful that the measurement after multiplication
does not go outside the range of -32767 to +32768. Otherwise your measurement will be range limited. The
alternative is to send the measurement as a floating point number, which the RUG3 supports, but floating point
requires 4 bytes per measurement in the transmitted format as opposed to 2 bytes when sent as an integer.

To specify a multiplier, click on the multiplier cell on the row you are specifying. You will be presented
with a panel of multipliers in the range of 0.0001 through 10000.0, as shown below. When you click on one, it will
become the multiplier for the measurement. Any measurement with no multiplier will assume a multiplier of 1.0.

—hultiplier. ..
Chooze multiplication scale factar for vaniable.
Faor T, wariable iz multiplied befare storage in T aray.
Faor RCY, received value iz multiplied before storage in data baze.

0.00M
0.001
0.0
0.1

1

10

100
1000
10.000

RN R R R Y

Figure 60 Panel to Select Telemetry Multiplier

Saving Format

After you have finished editing the format, simply click the “SAVE” button to save it to the project. If you
wish to abandon your changes, click “CLOSE”.

Receive Format Setup

After you click the “New RX Array” button from the communications module tab, you will be presented
with the following screen, which will enable you to establish the receive format for one source and destination
address on one port. This format is almost identical to the transmit array setup panel above. The first thing you
should do after this screen is presented is to set the source address and destination address that you wish to define.
You do that by clicking the up or down arrows in the spin edit boxes for source and destination address. If you have
previously defined a format for a selected combination of addresses, then it will be presented in the large window in
the center of the screen for you to modify. Otherwise, a blank format will be presented. In the example screen
below, the format is being defined for receiving from station address 1. Note that the destination address is specified
as 255. This means that the destination address is set to the address of this port, no matter what it may be. So, if a
ComSetup module sets this port’s address to 15, then this port will receive all messages from address 1 to address
15, and ignore all others.

185

Communications

R Array Setup...

TLK Array Entries:
—+ | Save | X Cancel |

wid |Bit |Mame | Muilt [Tume |,
HE"-.-"name:'

Source Addr; 1 :|¢
Desthddr: [255 for sel] 255 =
Part #: IEI

Siacial Field | Clear Cel

Add/Delete Bow
Add Bow | Delete Row

i* |nteger-16 bit
" Statuz-16 bit
" Float-32 bit

Cell Humbering
f* RE..R9 Numbering

" Maodbus Numbering 4 ¥
" DMP3 Numbering

Figure 61 Initial Receive Array Setup Panel
Adding and Deleting Rows

You will need a row for each signal you wish to place in the telemetry format. To add a row to the format
in the large window, select the type of entry you wish to add (integer-16 bit, status-16 bit or float-32 bit) by clicking
one of the radio buttons in the “Add/Delete Row” box in the screen’s lower left hand corner. Then, each time you
click the “Add Row” button, a new row of the type you selected will be added to the format, just above the selected
row in the large window. One row will be added for each click except for the case of adding a status word, in which
16 rows will be added, one for each status bit in a 16 bit word. For each row you add to the format, the system will
show you the word number, bit number (if status), and type (integer, status...). It will also provide space for you to
specify the name of measurement to be sent and its multiplier, if any. To delete a row, simply select the row in the
large format window and click on the “Delete Row” button.

186

Communications

Naming Received Data Fields

The large window in the center of the screen above contains the received data format. By selecting integer
vs status vs floating point entries as you expand the format, you have already specified the type and data base
location of each measurement or status in the receive format. All that is left is to place a name in each row and
specify a multiplier, if any. You must type a name into the edit box for each name cell in the format, since receive
array entries constitute inputs to the project, and must be named uniquely. After you click on a name cell, any name
in it will be transferred to the “RCV Name” edit box in the upper left of the example screen illustrated above. At
that location you can edit the name or replace it. When you click on another name cell, the edit box entry you just
entered will be transferred into the format’s name field on the cell you had formerly selected. In addition, the
compiler will append the source station’s address to the name for convenience and to help give each name a unique
field. In the example screen below, the variable “TapSet” was typed into the name edit box for the line 4 of the
format. It is saved for future reference as “TapSet.1” so that you can easily see that the variable originated at site
address 1. Variables in the RX database can be used as the inputs to any other modules.

R dray Setup...
TLM Array Entries:
—D Save | x Cancel |
wid |Bit |Mame IMult |Tope »
RO name: | 1 AlCalZ0maState.] Status
1 2 AlCal475 State] Statuz
Bl 1 = 1 3 Crnd 3008 aud. 1 Status
1 4 Felayld Status
- 1 5 Relap2.1 Stat
Dest Addr (255 orsell| 25 2 [T SHEEE =
1 K Relavd. 1 Statuz
1 3 LoopCommand. 1 Statuz
o 1 9 Statuz
Special Field | Clear Cell 1 10 Shatus
1 11 Status
Add/Delete Row 1 12 Status
Add Bow | Delete Raow 1 13 Status
1 14 Statuz
& Integer-16 bit 115 Stats
¢ Status-16 bit 12 16 e Elta“t‘s
" Float-32 bit) oha oAl
- I 4 TapSet1 |nteger
] Buse10.1 1.0 |nteger
el G TempatTest=10.1 Integer
et . 7 D ap0 Pk |nteqer
f« RE..R9 Mumbering o T
" Modbus Numbering P 5

Figure 62 Receive Array Signal Naming

Saving Receive Format

After you have finished editing the format, simply click the “Save” button to save it to the project. If you
wish to abandon your changes, click “Cancel”. Once you save the receive format, all the receive names you entered
will be entered into the RX database with an appendix equal to the station address from where the data is being
received.

187

Communications

Special Fields...GlobalRTC

To support special functions of realtime clock synchronization, the communication system provides special
field designators to be installed in transmit and receive arrays as defined below:

e GlobalRTC...designates that a 4 byte word contain a packed version of the realtime clock/calendar, consisting
of seconds, minutes, hours, day of month, month and year. Does NOT contain day of week (mon, tue..). When
transmitting, the system will read the realtime clock/calendar, pack it into 32 bits and insert it into the format.
When receiving, the system will unpack the 32 bit word and jam the values into the local realtime
clock/calendar.

To use these, you must first install a 32 bit floating point cell in the telemetry format for each. Then click on the
telemetry word’s name field to indicate where you want the special field to be installed. Finally, click the ‘Special
Field’ button and select the type of special field to install from the radio list. You can place as many of these special
fields as you wish in your telemetry formats. In the figure above, a GlobalRTC field is installed in line 2,
designating that this unit is to receive a realtime clock update in that field from another site. Note that you must
have identical formats in both transmit arrays and corresponding receive arrays for this to work properly.

How to Synchronize Realtime Clock/Calendars

Using the GlobalRTC telemetry entry you can easily keep RTU realtime clocks synchronized with the
master clock. Simply place the GlobalRTC entry in a 4 byte floating point entry in the transmit array at the master
site; and place one also in the RTU’s receive array at the same telemetry word. Then, when the master transmits
data to the remote, the remote will receive and automatically install a copy of the master’s realtime clock/calendar
entries. Note that the remote’s clock will be as much as a second behind the master’s clock due to the time
difference between the master’s initiation of transmission and the remote’s acceptance of the message.

Communications Formats

RUG9 Formats

The RUGY formats support operating system loading, flash erasing, configuration file loading; status,
integer and floating data reporting; operating status reporting; store and forward, and more. Each message is in
binary format with a variable length header, a data field, and CRC-16 security. The header field is presented below.

188

Communications

Table 11 RUG3 MESSAGE HEADER

Byte # 0 1 2 3 4,5,6 7

Variable Dest.
Length Station
Forward Addr
Path
0-3Bytes

Function | Sync # Bytes in | Message Type: Source
Message Station
Including Addr

CRC

Bits 7-4 Bits 3,2 Bits 1,0

addr
in fwd
path

Place
in fwd
path

0=TLM data
1=reserved
2=TLM data
w/ext addr
3=special
commands
4=log data
w/ ext addr
S5=reserved
6=load RTC
7=0S load
8=get status
9=pgm load

$C8=init
$C9=reply

Subfunct.

In the above table, if extended addresses are used, addresses are two bytes in MS, LS order. In the following
formats, all messages include the above header, so assume the block labeled “HEADER” means to include the
format above.

TLM Data Transfer Format

The following format is used to transfer data from a source station to a destination station and requests that
the destination station reply with data. Header length assumes no store and forwarding.

Table 12 RUG3 DATA TRANSFER POLL FORMAT

Byte # 0-4 5,6 7,8 9,10 11-N N+1,N+2
Function HEADER First TX word First RX # RX words TX data sent CRC-16
MS,LS in this | word to bein | requested, 0- | to destination
message reply, MS,LS 255
Table 13 RUG3 DATA TRANSFER REPLY FORMAT
Byte # 0-4 5,6 7-N N+1,N+2
Function HEADER First RX RX data sent from destination to source, CRC-16
word in reply, MS,LS
MS,LS

189

Communications

Special Command Format

The special command is used to control flash access, arm flash erasure, etc.

Table 14 RUG3 SPECIAL COMMAND FORMAT

Byte # 0-4 5 6 7
Function HEADER COMMAND DATA CRC-16
Bits MS Nibble LS Nibble
Subfunction O=reserved Data Last sector to
1=Halt pgm/ erase
arm flash access
2=Start OS/
close flash
3=Start user pgm/
close flash
4=Frase pgm
S5=erase OS
6=xfer to boot blk
code/arm flash
Table 15 RUG3 STATUS REPLY FORMAT
Byte # 0-4 5 6,7 8 9,10
Function HEADER | STATUS: OS version, Board revision CRC-16
Bit 0: 1=halted LS,MS

Bit 1: 1=config error
Bit 2: 1=0S error
Bit 3: 1=Sector armed

Send Flash Load Format

This format is used to load the flash with user configuration data. Hex ASCII representation uses vertical
bar delimiters separating fields of hex numbers (absolute addresses and pointers) as ASCII except that constants and
string constants are straight ASCII.

Table 16 RUG3 FLASH LOAD FORMAT

Byte #

0-4

5-8

9-N

N+1,N+2

Function

HEADER

Absolute starting
address in hex
ASCII

One line of load in hex ASCII

CRC-16

190

Communications

Table 17 Flash Load Reply Format

Byte #

0-4

6,7

Function

HEADER

STATUS:

Bit 0: 1=halted
Bit 1: 1=config error
Bit 2: 1=0S error

Bit 3: 1=Sector armed

CRC-16

Logger Dump Request Format

This format is used to request a dump of EventLogger or LogMany logger contents. Following reception
of this request, the RUG3 will reply with the specified items up to the length of the communications buffer or 255
bytes maximum message length including header and CRC. Note that there are two dump request formats. The first
initiates the dump and specifies all aspects of the dump source and format including which logger is to be dumped,
time resolution of the time tags, first index to be sent, number of indices to be sent, synchronizing time stamp, and
the format of all analogs to be sent. The second dump request is much shorter for efficiency and specifies whether
the last dump is to be repeated (in case it was not received by the requester) or the next series of log indices is to be
sent. End of log is signaled by a bit in the dump reply control field. If both the first log index to send and number of
indices to send are zero, then the dump will commence with the most recent sample and continue until all samples
taken since the last dump have been sent. The count of samples since the last dump is maintained by each logger
and is cleared automatically at the end of each dump.

Table 18 RUG3 LOGGER INITIAL DUMP REQUEST FORMAT

Byte 0-6 7 8,9 10,11 12-15 16-N N+1,
N+2
Funct | HDR Control field Firstlog | Number | Time Analog CRC
index to of stamp formats -16
send indices
to send
MS 5 bits: LS 3 bits: MS, LS, | MS,LS, [UNIX | 4-bits/analog:
B7:0=Logmany | Which first log | number | format | O=skip value
1=Eventlog [logger index to of time 1=4-byte float
B6:0=1sec tags | (Logger send indices | stamp, | 2,3=spares
1=ms tags ID=0-7)in | counting | to send 1 sec. | Below: mult
B5,4,3: RUG3 to from most res. to | analog by
O=init request | respond recent init value then
1=send next logged RTC. | send as signed
2=repeat last item If zero, | int
3=restart no 4=*10,000
dump with effect | 5=*1000
existing on RTC | 6=*100
setup 7=*10
4=clr logger’s 8=*1
‘new 9=*0.1
sample’ 10=*0.01
counter 11=*0.001
5-7=spares 12=*0.0001
13=*0.00001
14,15=spares

Subsequent dump requests do not need full definition of all parameters, only a command to send the next set of
samples, repeat the last set of samples, or restart the dump from the start. That format is presented below.

191

Communications

Table 19 RUG3 LOGGER SUBSEQUENT DUMP REQUEST FORMAT

Byte # 0-6 7 8,9
Function | HEADER Control field CRC-16
MS 5 bits: LS 3 bits:
B7:0=Logmany Which
1=Eventlog logger
B6:0=1sec tags (Logger
I=ms tags ID=0-7) in
B5,4,3: RUG3 to
X=init request respond
I=send next

2=repeat last
3=restart dump with
existing setup
4=clr logger’s
‘new sample’
counter
5-7=spares

Logger Dump Format

This format is a response to the above dump requests and is used to dump logger contents. Contents of
either the event loggers or the log many modules can be dumped using these formats. Which type of logger is to be
dumped is contained in the dump request above. Following reception of the request, the RUG3 will reply with
logged data or events as defined in the table below. The first byte after the standard 7-byte header is a one byte
dump control byte that indicates whether the message contains the last samples from the logger and, in the case of
the LogMany module, whether the analog values are followed with a 16 bit status field containing the packed states
of all logged statuses for those records.

Table 20 RUG3 LOGGER DUMP FORMAT (applies to both LogMany and Event Logger)

Byte # 0-6 7 8-N N+1,N+2
Function HEADER Dump control Logged event/data item(s) CRC-16
For EventLog: One or more records from
B7: 1=End of log EventLogger or LogMany module
B6-0: spares
For LogMany:

B7: 1=End of log

B6: 1=16 bit status
word follows
last analog

B5-0: spares

Each logged item in bytes 8-N above consists of a self-contained variable length binary message consisting of a one
byte preamble followed by a 2, 4, or 6 byte time tag. Formats of these items are presented below and are different
depending upon whether the requested dump is from a LogMany module or an Event Logger module. After the
time tag are one or more analog values. The preamble identifies whether the time tag is absolute or relative to the
last absolute tag sent; contains the event status; and specifies the event index or number of analogs following the
time tag. The first item in a message will always contain an absolute time tag of 4 byte length if the request above
specifies 1 second time resolution; or 6 byte length if the control field specifies ms (millisecond) time resolution.
Subsequent items will use relative time tags of the same resolution unless the delta time between the new item and

192

Communications

the last absolute time tag exceeds a two byte range. In that case, a new absolute time tag will be sent with the item;
and all subsequent items in that response will be relative to it. Time tags present the number of seconds or
milliseconds since January 1, 1970. Time tags in any message are presented MS byte first followed by intermediary
bytes and ending with the LS byte.

The table below presents the data format for a single event from an EventLog module. The most significant
preamble bit is a spare. The next most significant bit specifies whether the item’s time tag is absolute or relative to
the last absolute time tag sent. The next most significant bit holds the event status (0 or 1). The least significant 5
bits specify which channel caused the event to be recorded. Integer values in any message are presented MS byte
first followed by the LS byte. Floating point values are presented with exponent first followed by the mantissa MS
byte, intermediary byte, and LS byte last.

Table 21 RUG3 LOGGED EVENT ITEM FORMAT (format for each event/data item in table above)

Byte # 0 1-N N+1...N+4
Function PREAMBLE, 1 byte Time Tag (2, 4 or 6 bytes) | Analog Value
B7: Spare Bits 0-4: Channel Absolute 6-byte (ms 2-byte signed
B6: O=abs time tag Index from event resolution) integer, or
1=rel time tag logger module, 0-31 Absolute 4-byte 4-byte float
BS5: event status (0,1) (1 sec resolution) (Format specified by
Relative 2-byte (ms initial request)
resolution) Byte order:
Relative 2-byte Integer: MS,LS
(1 sec resolution) Float: Exp,MS...LS
Byte order: MS...LS

Similar to the table above, the table below presents the data format for a single record from the LogMany
module. The first preamble byte defines the format for that event of all data following the preamble. The most
significant preamble bit is a spare. The next most significant bit defines the time tag format. Remaining bits are
spares.

Table 22 RUG3 LOGMANY ITEM FORMAT

Byte # 0 1-N N+1,...N+X
Function PREAMBLE Time Tag (2, 4 or 6 bytes) Analog Value(s)
B7: Spare B0-B4: Absolute 6-byte (ms 2-byte signed
B6: O0=abs time tag | Spares resolution) integers, or
1=rel time tag Absolute 4-byte 4-byte floats,

B5: Spare (1 sec resolution) (Format specified by
Relative 2-byte (ms initial request)
resolution) Byte order:
Relative 2-byte Integer: MS,LS
(1 sec resolution) Float: Exp,MS...LS
Byte order: MS...LS

193

Communications

Logger Dump Request/Response Examples

Below is an example of requesting all records from a LogMany module that have been logged since the last
dump. The LogMany has been recording a single 16 bit integer per record. The request specifies 1 second time tags
followed by the single integer value per record. The logger had saved 12 records since the last dump.

INITIAL DUMP REQUEST:

$C8 Header sync byte

$13 Message length byte (19 bytes incl. CRC)

$40 Message type (request logger dump using extended addresses)
$00 Source address MS

$01 Source address LS (Source address is $0001=1)

$02 Destination address MS

$05 Destination address LS (Destination address is $0205=517)
$03 Control field specifies LogMany with ID=3, 1 sec time tags
$00 First log index to send MS

$00 First log index to send LS (start at most recent sample in log)

$00 Number of indices to send MS

$00 Number of indices to send LS, value of zero specifies to send all samples since last dump
$00 Time stamp MS, value of zero specifies to not alter realtime clock

$00 Time stamp

$00 Time stamp

$00 Time stamp LS

$08 Analog to be dumped as integer with multiplier of 1 (i.e., unaltered)
$F1 CRC byte 1

$A8 CRC byte 2

RESPONSE:

$C94B 400001 0205 Reply, 59 byte length, source address 517, destination 1

$00 Dump control, not end of log, no status word follows analogs
$00 48 66 SD D5 00 0B 1% item: abs time tag=June 28, 2008 15:50:45, integer value=11
$40 00 02 00 0A 2" jtem: rel time tag=2 seconds before above, integer value=10
$40 00 04 00 09 3" jtem: rel time tag=4 seconds before above, integer value=9
$40 00 06 00 08 4™ item: rel time tag=6 seconds before above, integer value=8
$40 00 08 00 07 5™ item: rel time tag=8 seconds before above, integer value=7
$40 00 0A 00 06 6™ item: rel time tag=10 seconds before above, integer value=6
$40 00 0C 00 05 7™ item: rel time tag=12 seconds before above, integer value=>5
$40 00 OE 00 04 8™ item: rel time tag=14 seconds before above, integer value=4
$00 48 63 BA A4 0003 9™ item: abs time tag=June 26, 2008 15:49:56, integer value=3
$42 CRC byte 1

SAE CRC byte 2

SUBSEQUENT DUMP REQUEST TO SEND NEXT BATCH OF SAMPLES:
$C8 Header sync byte

$0A Message length byte (10 bytes incl. CRC)

$40 Message type (request logger dump using extended addresses)
$00 Source address MS

$01 Source address LS (Source address is $0001=1)

$02 Destination address MS

$05 Destination address LS (Destination address is $0205=517)
$0B Control field specifies LogMany with ID=3, 1 sec time tags
$8D CRC byte 1

$38 CRC byte 2

194

Communications

RESPONSE:

$C9 1B400001 0205 Reply, 59 byte length, source address 517, destination 1

$80 Dump control, end of log, no status word follows analogs

$00 48 63 BA A2 0002 1% item: abs time tag= June 26, 2008 15:49:56, integer value=2
$40 00 02 00 01 2" item: rel time tag=2 seconds before above, integer value=1
$40 00 04 00 00 3" item: rel time tag=4 seconds before above, integer value=0
$91 CRC byte 1

$16 CRC byte 2

If an additional request were to be sent to dump the next batch of samples, identical to the subsequent dump request
above, or if a request to clear the ‘new sample’ counter is sent, the RUG3 would reply with an ‘empty log’ response:

$C90A 400001 0205 Reply, 10 byte length, source address 517, destination 1
$80 Log empty bit is set
$8D 38 CRC bytes

Below is an example of a valid dump request. It requests a dump of all log contents of a LogMany module
with ID=3 from the most recent index to the end of log. The logger is assumed to have recorded 10 analog values
per record. The request specifies 1 second time tags to be followed by analog values number 1,2,3,4 and 7 of each
record. Logged values 5, 6, 8, 9, and 10 of each record are not dumped. Here would be a valid request and response
for this dump (all bytes shown as hexadecimal):

INITIAL DUMP REQUEST:

$C8 Header sync byte

$17 Message length byte (23 bytes incl. CRC)

$40 Message type (request logger dump using extended addresses)
$00 Source address MS

$01 Source address LS (Source address is $0001=1)

$02 Destination address MS

$05 Destination address LS (Destination address is $0205=517)
$03 Control field specifies LogMany with ID=3, 1 sec time tags
$00 First log index to send MS

$00 First log index to send LS (start at most recent sample in log)
$01 Number of indices to send MS

$80 Number of indices to send LS ($0180=384)

$48 Time stamp MS...June 17, 2008 at 10:16:21 (AM)

$57 Time stamp

$8E Time stamp

$F5 Time stamp LS

$18 Analog #1 as integer (LS nibble), analog #2 as float (MS nibble)
$76 Analog #3 as integer (float *100.0), analog #4 as integer (float *10.0)
$00 Skip analog #5 and #6

$05 Analog #7 as integer (float *1000.0), skip analog #8

$00 Skip analog #9 and #10

$C7 CRC byte 1

$B9 CRC byte 2

RESPONSE:

$C9 56 40 00 01 02 05 Reply, 86 byte length, source address 517, destination 1

$00 Dump control, not end of log, no status word follows, logger ID=3
$85 First item: LogMany, abs time tag, no status word, 5 analogs follow
$48 SA 6C 35 Absolute time tag: June 19, 2008, 14:24:53

$000E42 8B 1896 05 D1 02 B73A2D 14, 69.5, 1489, 695, 14893

$C5 0001 Second item, 1 second prior to first item above

$000E 42 8B 1896 05D1 02 B73A2D 14, 69.5, 1489, 695, 14893

195

Communications

$C5 00 04

$00 OE 42 8B 18 96 05 D1 02 B7 3A 2D
$C5 00 07

$00 OE 42 8B 18 96 05 D1 02 B7 3A 2C
$C5 00 0A

$00 OE 42 8B 18 96 05 D1 02 B7 3A 2C
XX XX

Third item, 4 seconds prior to first item above

14, 69.5, 1489, 695, 14893

Fourth item, 7 seconds prior to first item above
14, 69.5, 1489, 695, 14892

Fifth item, 10 seconds prior to first item above
14, 69.5, 1489, 695, 14892

CRC

Note: the values contained in the response are: analog #1 (14.892 as integer), analog #2 (69.5 as float), analog #3
(14.892 *100 as integer), Analog #4 (69.5*10 as integer), and analog #5 (14.893*1000 as integer).

196

Sample Applications

CHAPTER 8...SAMPLE APPLICATIONS

Introduction

This chapter presents a number of application examples to illustrate how to apply the RUG3,
configure the software modules, set up displays, use ladder logic, etc. All examples assume the use of
standard RUG3 board configurations with displays (RUG3D, RUG3P). In addition, we have used
constants for most module input properties in these examples. Since virtually all input properties can be
taken from the databases, we could quite easily have used setpoints for many of the input properties that
could otherwise be set with setpoints. For example, we have used the constant “5” for the analog input
filter time constant in all examples. This means that the input value “5” would be obtained directly from
the flash memory and would be very secure against inadvertent change due to transients. If you change
that to a setpoint, the user would be able to adjust the analog input filtering, and would become responsible
for getting it right. In these examples, we will not discuss all details of each application; only those details
we wish to illustrate with the example.

197

Sample Applications

AP NOTE #1: Stand Alone Tank Level Monitor, TankTest.rgd

The following application uses a RUG3D to monitor and display a tank level, and issue high and
low alarms using a pair of relays. It also presents the tank level and alarms on its LCD. High and low
alarm setpoints are entered locally. The following diagram presents the necessary wiring. Configuration
file for this application is TankTest.rgd.

Tank Level
+ | .
.| Transducer 1 :IH_I__I

DIGITAL INPUTS ANALOG INPUTS

RUG3RTU

RR3 T
RRS L
RR4 (/)]
pma U

@ | Tank High Alarm
. Tank Low Alarm

S 120 VAC

+ -

12VDG
Wall
Xformer

Figure 63 Tank Level Monitor Application

The following modules are used in this example:

198

Sample Applications

[0+ Sys lMath] I:::untn:ull Statz] I:-:umm]

HitlrrmSP.. . Setpaint
Highélrm. .. Digitaldutpt
Lowdslrrn,.. Digitaldutput
LowalmSp...Setpaint
System...SpreSetup
TankLwl.. Analoglnput

/0 +Sps | Math Control | Stats | Comm |
‘TarﬂaHiLu&Iarms. AlmHiLo

Figure 64 Modules in R3DTank1 Application

Here is a list of what each module does:

HighAlrm...Digital Output and LoAlrm...Digital Output:
These modules are used to connect the alarm statuses for low alarm and high alarm, to the first
two relays on the relay output board. If we had used AlarmOutput modules instead of Digital
Output modules here, the outputs would have flashed on and off automatically when their
corresponding alarms were declared.

System...SysSetup:
This module sets the display backlight blanking interval, the logoff interval, and sets up the logon
security code for setpoint access.

TankHiLoAlarms...AlrmHiLo:
This module compares the high and low alarm setpoints with the tank level and issues output
statuses when alarm conditions exist. They delay the declaration of an alarm by 7 seconds using
timers.

HiAlrmSp...Setpoint and LowAlrmSp...Setpoint:
This is where the high and low alarm setpoints are created so they become part of the setpoint list.
Their values are sent to the floating point data base for use by the alarm detection modules above
and for display.

TankLvl...Analog Input 4-20:

This module reads the channel 1 A/D converter, low pass filters it, converts its value to engineering units in the

range of 0 to 20 feet, and sends the result to the floating point data base where it is available for display and
use by alarm modules. The module assumes the input is a 4-20 ma. signal.

Main Display Setup

We’ll examine the main display, which is presented below.

199

Sample Applications

Dizplay/Fepart E ditar

Dizplay title for menus |Main display DSP Part: ||:I :|¢ —D Save
Dizplay text. . uze @& whers vanable data should appear. DSP #: ||:| - % Cancel
Tanlk ft=@@ @ Update trigger:

Hi=0@. @ Lo=0@. @ |System.SecTrg

Hi alarm OH=@

Lo alarm OH=@

Yariables on zelected line:
TankLwl.Out

=L 0 00] O e LD D

Figure 65 R3DTank1l Main Display Setup

Notice that the display title for menus is given as “Main display”. This means that this display will be
referred to as “Main display” in the display list box of the R3Setup program, and in the RUG3 display
menu when the RUG3 is running. The display port choice of zero means that this display will be presented
on the RUG3’s LCD. Display number zero means that this display will always be listed first in menus.
The update trigger of “System.SecTrg” was dragged into the trigger list box from the status data base.
When running on the RUGS3, that trigger will cause the display to rewrite once per second. Finally, notice
that the cursor is resting on the top line, the line that presents the tank level in the large display editing
window. At the same time, the ten item list at the right side of the setup screen above begins with the
variable TankLvl.Out. That variable name was dragged from the floating point data base into the
“Variables on selected line” list box while the cursor was resting as shown. Its placement at the top of the
list establishes that when the RUG3 hits the “@@.@” field on the top line of the display, it will go get the
tank level and place it on the LCD in place of the “@@.@” field.

200

Sample Applications

AP NOTE #2: Stand Alone Two Pump Controller,
TANK2PUMPS.rgd

This example implements a controller for two pumps to maintain a tank’s level using a local tank
level measurement. It is based on the example file “Tank2Pumps.rgd”. In it, we wish to illustrate use of
the following modules:

LeadLagSeq4...lead lag sequencer for rotating the lead pump and including backspin delay
PumpUpDnCtrl...pump up/down controller

MismatchLatch...used to detect pump failure

StringSwitchByBits. ..used to present meaningful messages to LCD

The figure below presents the wiring for this example:

201

Sample Applications

Tank Level
Run2_— t+ | h—
i®; Q . o Transducer 1 l:‘.é
§gggggl L\% 3,?5332;3
______] o] | i
DIGITAL INPUTS ANALOG INPUTS
@ O RELAY OUTPUTS
00oo0oDogr :]
e OO
£ 3 Ilu..l IE,I g
II I||I'| ||I I| |||
I| J|| lllll JI ll .I
|7 ' . Pump Alarm
' Tank Alarm
| 120vac
+ - 1 A 1 .
12900 PUMP1 | [PumP2
Wall
Xformer

[] Pump Starters

Figure 66 Two Pump Stand Alone Controller
General Operation

The pump control function is accomplished by two PumpUpDnCtrl modules, each of which
constantly compares the tank level with CALL and OFF setpoints to determine if its pump needs to be
called. As the tank’s level falls, pump A will first be called, then Pump B, etc. Outputs from these two
controllers are routed to a LeadLagSeq4 sequencer. Its job is to call as many of its outputs as its inputs
demand, beginning with the lead pump. Since we haven’t specified a lead pump, it rotates the lead pump to
equalize wear on the pumps. It also delays pump switching so that a specified delay occurs between
successive pump switch actions. Sequencer outputs are routed to two relays that would be used to call
pump starters. This logic is presented in the following diagram. The MismatchLatch modules are used to
detect pump failures by comparing the pump call signals with pump run digital inputs. If the run indication
is not present within a user determined time delay, then the pump is declared failed, and an alarm output is
latched. The MismatchLatch module’s latched output it used to lock out the corresponding pump. Aspects
of the use of these modules in this application are discussed below.

202

Sample Applications

In a practical application, you might wish to interject HOA2 modules between the LeadLagSeq
module’s outputs and the relay output modules. You could then use setpoints to control the HOA states so
the operator could declare each pump’s OFF, HAND or AUTO mode by changing its setpoint.

Note that using PumpUpDn modules enables you to switch this control strategy from pump up to
pump down with a simple setpoint change..

—Analog Input

Tank Level =

| eadl ag Sequencer

DigitalOut
—» Level <
Call Setpoint Call Setpoin » Input
Off Setpoint »{Off Sefpoint Pump A Call P1Call
DigitalOut
__ —lLevel *
Call Sefpoint —»|Call Setpoin PmpBCal P2Call » Input
Off Setpoint_— Off Setpoint

——{ Pump C Call P3Call ——»
S‘ #1
» Status
P1RUND! |Status i LA — ———>| PumpDCall P4Call —
MismatchLatch_
- » Status #1 Latch » Pump 1 Lockout
P2Run.D! |Status #2 ' » Pump 2 Lockout
—| Pump 3 Lockout
—> Pump 4 Lockout
) —| Lead Designator
Setpoint

h 4

Call/Backspin Delay

Figure 67 Four Pump Control Logic Diagram

LeadlLagSeq4 Module

In this application, the LeadLagSeq4 module receives pump call demands from the PumpUpDn
modules. When it receives its first call, it will immediately call the lead pump. In this application, the lead
pump designator has been left blank, so the sequencer will increment the lead designator each time the first
call is received when all pumps are off. You could install a setpoint and connect it to the lead designator to
enable the operator to designate a lead pump in the range of 1 to 4. To allow lead pump rotation, he would
simply designate a lead pump of zero. This module also performs ON and OFF delay timing to assure that
no two pumps will switch on or off at the same time. To control more or fewer pumps, simply install more
or fewer pump up controllers and connect them to the LeadLagSeq4 module’s call inputs. The sequencer
determines how many pumps to control based on how many call inputs have been configured.

203

Sample Applications

PumpUpDn Module

The two PumpUpDn modules in this example perform the comparisons between tank level and
user-entered setpoints. Here, we are using them in pump up mode (mode=0), where they function to
maintain a tank above a certain level by calling for a pump if the tank’s level falls below a user entered
pump call setpoint. During pumping, if the tank rises above the pump off setpoint, then the module turns
off the pump call. Using a setpoint (UpDownChoice.SP in this example) the operator can change the mode
from Mode=0 to Mode=1, causing the PumpUpDn controller to become a pump down module. In this
mode, it acts to call a pump if the tank level rises above a certain level, then pumps it down and turns off
the pump once the level falls below the pump off setpoint.

MismatchLatch Module

Two MismatchLatch modules are used to watch for a pump’s call output to match its run
indication. If they are not the same (both=0 or both=1) within a user determined time delay, then the
module declares an alarm and latches the alarm. The latched alarm is used in this application to lockout the
corresponding pump until an operator presses a reset button on the RUG3’s keyboard. The latched alarms
are also ORed together to produce a pump fail indication that controls relay #4 that could be used to
energize a lamp or horn.

StringSwitchByBits Module
It’s easy to present statuses on a display as either ‘0’ or ‘1°, but it is clearer to plant operators if we
use words like CALL, RUN, FAIL, OK, etc. The StringSwitchByBits module is used in this example to

do just that. Each module accepts up to 4 statuses and uses them to select one of 16 strings to present as the
module’s output. We use the string outputs in place of ‘0’ or ‘1’ on the display.

204

Sample Applications

AP NOTE #3: Telemetering Tank Site, TANKTESTTLM

In this application note, we will take the stand alone tank site example above, and add telemetry to
it. This application is based on the example file “TankTestTIm.rgd”. In it, we wish to illustrate use of the
following modules:

e ComSetup...establishes communications channel parameters for the modem
e Rxand Tx arrays...arrays that define communications formats

e TriggerOnRCV...issues trigger when the unit receives a message from a particular station

The figure below presents the wiring diagram for this example:

Tank Level

Transducer 1

lsavaauzt 5,533222?
: PWR SUPPLY
DIGITAL INPUTS AN, N
f=2]+13,5 VDC
| —§=2| GND
O‘ RELAY OUTPUTS .f1r§n\}ic
oADK | S 1M5VAC
T%EEEEEEEE
)‘-;NT-EN-NA-

RITRON
RADIO| O d)
(o)

DB9Male

Figure 68 Radio Telemetry Tank Monitor

205

Sample Applications

General Operation

This program reads an analog input value, the tank level, and compares it with high and low alarm
setpoints it has received from the master site via the receive telemetry (RX) array. It also keeps the tank
level in the outgoing transmit (TX) array for sending to the master when the master polls. It generates high
and low tank level alarms to send to the master. It also generates low battery voltage alarm, and measures
battery voltage and on board temperature to send to the master.

This uses the modem’s four wire channel for communications with the master, with transmit delay
set compatible with radios. Therefore, it can be used for either audio radio or lease phone line applications.
Station address is adjustable using a local setpoint, so the program can be used at any address in a system.
However, before the unit will communicate, the address setpoint will need to be set correctly after first
installation.

Communications Setup

The modules used to setup communications are the ComSetup module, which initializes the
modem, the RX and TX arrays, which hold received data and data to be transmitted, respectively, and the
TriggerOnRCYV module, which detects when a message has been received. These modules are discussed
below:

ComSetup
ComSetup module input properties for this application are presented below:

Inputs:

e Port(1,2)...integer port designator, set to 2 designating the modem port.

e Trigger to install setup...status trigger input. This input TRUE causes this module’s setup to be
installed in the designated port. Uses output of OrGate module causing installation on either boot up
or installation of a new unit address. Also input to the OR gate is a once per 10 minutes trigger that
reinstalls the ComSetup module parameters each 10 minutes as a safeguard against the modem port
losing a critical parameter and becoming non-communicative indefinitely.

e 0=RS232, I=modem...integer to establish connection between the UART and other hardware on the
modem. Set to mode 1 to connect to audio radios or to 4-wire leased line phone systems.

e Baud (50-19,200)...integer specifying any baud rate from 50 to 19,200 baud. Set to 300 baud for radio

or phone line use. The RUG3 modem is limited to 300 baud to keep the design extremely low power.

Higher baud rates would require an external modem or use of a radio with internal modem.

Parity (0,2,3)...integer specifying parity choice: 0=none, 2=odd, 3=even. Set to 0=none.

Address (1-254)...integer address for this port on the network. Set to the output of a setpoint module.

Mode (1,2,3,4,6,7,8,9)...integer to select communication protocol. Set to 2, RUG9 protocol.

TX delay tenths of sec...integer to set delay between the time the RUG3 keys its modem and radio,

and the time it actually sends data. This is necessary to enable receiving radios and modems to acquire

the signal. Set to 7, for radio or phone line application.

e TX amplitude(0-255)...transmit amplitude, where 0-255 spans 0 to approximately 4 V peak to peak.
Set to 127.

o Com buffer #bytes...size of buffer allocated for receiving and transmitting. Must be set to something
greater than the longest anticipated received or transmitted message. Set to 150 bytes, which should
allow messages of up to 65 integer registers.

Detecting and Displaying Receptions
The TriggerOnRcv module detects receptions. In order to ascertain that the communications

system is working, it is useful to know if this station is successfully receiving from the master. For a
reception to be accepted, it must be received with the correct cyclic redundancy check (CRC). If the CRC

206

Sample Applications

check fails, no data is accepted from the message, no reply is transmitted, and the TriggerOnRcv module
will not issue a trigger indicating that a successful reception occurred. TriggerOnRcv module inputs are
set as follows:

Inputs:

e Port to receive...integer port specifier, set to 2, the modem port.

e Address of source...integer address of source station from which transmission is to cause a trigger.
Leaving this entry blank will cause the module to issue a trigger on any transmission directed to the
destination address. Set to 1, the master’s address.

e Address of destination....integer address of message destination to which a transmission is to cause a
trigger. Leaving this entry blank will cause the module to issue a trigger on any reception from the
source address. Set to 255 specifying whatever address this unit has.

Primary Outputs:

e Trigger event output...Rev.Trigger...status trigger that becomes true when a message is received on
the port and board specified, and having the source and destination addresses specified.

e RCVed source address...Rcv.Src...integer address of last received message on the specified board and
port, even if it was not destined for this unit.

e RCVed destination addr...Rcv.Dest...integer address of last received message on the specified board
and port, even if it was not destined for this unit.

The TriggerOnRcv module’s trigger output is used to preset a counter that counts seconds, so the counter
will indicate the number of seconds since the last reception.

Handling Address Setting by Setpoint

In this application, we enable the operator to set the address simply by setting a value in a setpoint.
That in itself is easy; we simply install a setpoint module and use its output as the address input to the
ComSetup module and as the destination address for the TriggerOnRev module above. But, we must
trigger the ComSetup module to install the address before it will have effect in actual communications.
That involves the using a TrigOnChange module that watches for changes in the setpoint and issues a
trigger when it detects a change. That trigger is used to re-install the ComSetup module.

Setting Up Telemetry Arrays

To establish the contents of the messages flowing between the master and this remote, we must
configure the telemetry arrays for both incoming data and transmitted data.

Receive Array

The figure below presents the RX array setup, i.e., the array where data from the master will
arrive.

207

Sample Applications

Fi Amray Setup...
TL &rray Entries:
—D Save | x Cancel |
Wwid Bit RENE B Lalk Tupe
RCY name: | 1 1 Status
1 2 Statuz
Source Addr; |1 :|¢ ! 3 atatus
1 4 Status
; 255 — 1 5 Status
Dest Addr: [255 far self]l :| 1 E Clatus
1 7 Statuz
1 a3 Statuz
o 1 9 Statuz
Special Field | Clear Cell 1 10 S tatus
1 11 Statuz
Add/Delete Fow 1 12 Status
1 13 Statuz
AddF | Delete R
ik = L e Status
' Irteger-15 bit 1. 15 Status
 Status-16 bt 12 16 T : thtus
~ Floal-32 bit iTank5P.) nteqer
& I 3 LoT ankSF.1 |nteqer
4 |nteqer
:] Integer
Cell Mumbering
{« RE...R9 Mumbering
" Maodbus Numbering F 3

Figure 69 Receive Array Setup

Notice that this array references source address=1 and destination address=255. Source address=1 means
that this array will accept data from address number 1, the master site. Destination address=255 means that
this array is to accept messages destined for us, no matter what our address is set to. Notice that there are
only two entries in the array: TankHiAlrmSP.1 and TankLoAlrmSP.1. These names were typed into the
cells as the names of signals from the master. The “.1” appendage was added by the compiler to designate
that these variables are arriving from site number 1. The multiplier of 0.1 for each of these variables, and
the designation of integer, indicate that the system is to read each of these as an integer from the receive
buffer and multiply by 0.1 before storing the result in the receive database. At the master, before
transmission, each setpoint is multiplied by 10.0 before being sent to this site. The multiplier preserves one
place to the right of the decimal point, yet allows the value to be sent as an integer, which is more efficient
to transfer (2 bytes) than a 4 byte floating point value.

Transmit Array

The figure below presents the transmit array setup, i.c., the array that establishes the contents of
this station’s reply to master polls.

208

Sample Applications

T drray Setup...

TL &rray Entries:

Save x Cancel |

[l

EE B Lalk Tupe
T ankHiLodlarmz. Hidrmn Statuz
TankHiLodlarms. Lodlrm Statuz
B atteroltage. Loddim Statuz
Status
Statuz
Statuz
Statuz
Statuz
Statuz
Statuz
Statuz
Status
Statuz
Statuz
Statuz
Statuz
TankLwl.Out 100.0 |nteqer
Spgtem. B atty 100.0 |nteqer
Syatem. TempF 10.0 |nteqer
Integer
Inteqer

linbaimar

>

Diest Addr: (255 for self]|1 |

oo

Y | Clear Cel

—_
=

—_
—_

Add/Delete Fow
Add Bow | Delete Raow

—_
a2

—h
=

—_
o

{+ |nteger-16 bit
" Statuz-16 bit
" Float-32 bit

LI
(=g

Cell Mumbering
{« RE...R9 Mumbering
" Maodbus Numbering

Aqmm_p.wN_L_L_L_L_L_L_L_L_L_L_L_L_L_L_L_LE
—_
2%}

Figure 70 Transmit Array Setup

Here, there is no source address, since we are the source. The destination address is set to 1, the master’s
address. If we wished to send to another unit, we would have to create a different array for that address.
The entries in this array consist of three statuses (the alarms) and three floating point values that are
designated to be multiplied by a factor (100.0 or 10.0), and then be sent as integers. The statuses are
dragged from the status database, and the three floating point values are dragged from the floating point
database. Note that the range of value that can be sent without a multiplier is —32767 to +32768. If we use
a multiplier, such as 100.0 as in the case of the tank level above, then the tank level that we can report is
limited to the range of —327.67 to +327.68...normally not a limitation for practical tanks.

209

Sample Applications

AP NOTE #4: Communications Setup, General

In our experience, it is preferable to define the transmit and receive arrays in the remotes before
defining them in the master site, since control strategies and I/O assignments will largely dictate the
specific data that must be passed between the RTU’s and the master. After that, then define the master
arrays to match the remote arrays. To illustrate the relationship between the arrays, the following diagram
shows how the tank level originates in the tank site and is passed among other arrays to get to its
destinations. Notice that the tank level is multiplied by 100.0 every time it is transmitted and by 0.01
whenever it is received to preserve two decimal places. Site to site transfers are done using the
communications channel, whereas, within a unit such as the master site, transfers are done by dragging the
measurement from one array to another.

210

Sample Applications

Tank Site
TX Array at Tank Site
[S[=]=]
5} - Tanklvl.OUT 100.0 Integer N :::
7 - board, Batty’ 100.0 Integer :::
a - rboard. TempF 10.0 Integer | f~ —
RTU-2
Pump Station
RX Array at Pump Station
TS nmm
Radio or Phone Line & , u Intecer | [gog
FPump1HOA&1 Integer oEE
/N Purnp2H 04,1 Integer | - e

RTU-3

Radio or Phone Line

RX Array ai/Master Site, RTU-2 Channel

Master Site

E . Integer
7 . Irteger
g . Integer/ |

RTU-3 Channel
100.0

y at Mastef Site

Internal Transfers Ilnlte;ell
Integer
Integer |

PmpTHOA TEL
Pmp2HOA TEL

at Master Site, Modbus Channel

/] MASTER-1

] ‘im 100.0 Inteqer
27 RTUZE st s 1100 Inteyz |/
28 RTUZTemp.2 12.0 Inlegzr |/
_
Modbus I
1
HOW ARRAYS TRANSFER TANK LEVEL | %
SCADA Master

Figure 71 Communications Setup, Passing Tank Level Among Sites

211

Sample Applications

AP NOTE #5: Ethernet Hookup

Introduction

The RUGS3 can easily be connected to an Ethernet network using one of the commonly available
serial to Ethernet adapters such as the Digi One Real Port that we tested. We derived the installation
procedure below from the manufacturer’s installation and configuration guidelines for the device.

Digi One RealPort RUGID Configuration

RealPort hardware installation:
Connect the RealPort Ethernet interface to the LAN
Connect the RealPort serial connection to the RUGID using a “NULL Modem cable or adapter.
Apply power to the RealPort

Software Installation (Configure RealPort IP Address):

Install Digi Port Authority — Remote software

Insert Digi “Access Resource” CD

Select your operating system from the drop down menu

Select Digi One from the Hardware menu

Select Digi Port Authority — Remote from the Software menu

Install Software

Run the DPA — Remote software
2. If DPA-Remote is not set for ADDP, choose ADDP as the Discovery Protocol.
3. Choose Discover.
A list of Digi devices appears. Systems with IP addresses of 0.0.0.0 need IP addresses.
4. Select a device from the list and then choose Configure.
5. Supply an IP address, subnet mask and default gateway and then choose OK.
DPA-Remote configures the IP address, subnet mask and default gateway.
If the DPA — Remote software was unable to configure an [P address
Consult chapter 2 in the documentation included on the CD — Rom
\documentation\92000305 B.pdf

Configuring the Digi One RealPort:
Open Internet Explorer and enter the IP address of the RealPort
At the Login prompt enter “root” (default)
At the password prompt enter “dbps” (default)
From the menu on the left select “Configure” “Port” Port1”
Portl should have the following parameters
Device Type = RealPort
Terminal Type = vt100
Flow control = none
Baud Rate = 9600
Data Bits = 8
Stop Bits =1
Parity = None
Disable SocketID, Disable AutoConnect
Click the Submit button

212

Sample Applications

Software Installation (RealPort device driver):
Install RealPort software
Insert Digi “Access Resource” CD
Select your operating system from the drop down menu
Select Digi One from the Hardware menu
Select RealPort from the Software menu
Install Software
Follow the onscreen directions
You will need the previously configured IP address of the Digi One device to complete the
installation
Record the COM port that is used by the RealPort driver

Accessing the RUGID remotely:
The PC software that “talks” to the RUGID through the Ethernet must be configured to use the same
COM port as the RealPort driver.
The PC software must also be configured as follows
9600 baud
no flow control
8 data bits
1 stop bit
no parity
This is the default for R3setup

213

Sample Applications

AP NOTE #6: ALERT Transmitter

The RUG3’s extremely low power (<3ma.), even with its modem able to receive, makes the
RUGS3 ideal for remote solar powered applications. The ALERT community uses a compact serial protocol
that is now installed into the RUG3, lending the RUG3 to ALERT applications. This application presents a
simple way to report a tank/reservoir level and tipper bucket rain level. Other measurements could easily
be added using spare RUG3 1/0. The program is ‘TedR3DAlert!.rgd’. (Submitted by Ted Roper of Roper
Associates.) The following figure presents a typical wiring diagram:

Tank Level

Bucket || Transducer1 |

[+
_‘ 12 V BATTERY

Pssszss L 5J§3322=§
DIGITAL INPUTS ANALOG INPUTS
SOLAR CHARGER

2| LOAD

9| GND

W) Frame

On w—— RELAY OUTPUTS [|57 EQ‘HT
F fEEEEEEEE

)'-;NT-EN-NA-

RITRON
RADIO

0©
Cq

52
&

m
- S
00

sssee
.g

w

3

DB9Male

Figure 72 Alert Radio Remote Wiring Diagram

214

Sample Applications

The key elements of this application rest in the method of getting the data transmitted in the
ALERT format.

SendAlertData Module
Instead of the data residing in a transmit array as in the applications above, for the ALERT

protocol we have the SendAlertData module whose job is to read the user’s data and prepare the
transmitted message when triggered. Typical use would be as shown below:

bodule Type: SenddlertD ata

Module name, this instance: |53r-,,:|,.-_~.'|| —D Save | x Cancel |
Toggle Descr/Motes |

Dezcription:

YWhen trigaered. zends ID/data cambination pairs uzing the ALERT farmat. 1D range s 0-8191, data
walue range iz 0-2047. Each pair rezultz in a 4 bpte ALERT standard mezzage being zent to port 2. Up to
10 |0 /data pairs can be defined to constitute one transmizzion. Module will install data in butfer for
tranzmizgion until it encounters a blank 10 or hitz the end of the inpuk st
|nputz and constants: Outputs to Data Baszes:

[term; Wal Assigned -

Trigaer inout CuigzControl. Trg

10 $1 idR ain. 5P

Drata #1

IO g2 idLevel 5P

Data g2 RawlewelOUT

D #2 idBatt 5P

Diata H2 RawBatt. OUT

10 f4

Dats Ha

10 f#5

Dats H5

10 HE

Data #E

D #7 v

Figure 73 SendAlertData Module Setup

Note that the trigger is taken from a quiescent controller that handles transmission timing. Following that
trigger in the figure above, each measurement is installed as an ID number followed by the actual
measurement. The ID numbers are taken from setpoints so the installer can set them at installation time.
Up to ten measurements can be made a part of a transmission; and any number of SendAlertData modules
can be used to give different combinations of measurements.

ComSetup Module

The ComSetup module is slightly different from that of the application above in that the ALERT
protocol is chosen (Mode=8).

QuiescentController

Timing of transmissions is controlled by a QuiescentController, whose setup is illustrated below:

215

Sample Applications

kodule Type: QuiescentContraller

todule name, this instance: |EJuiesEu:-ntru:uI _D Jave | X Carcel |
Togale DescrdM n:ntes|

Description:

Triggers if change latched and delay expired; or at end of delay if change latched.

taodes: [, trig on any change; 1. triig on OFF to OM; 2, tiig on OM ko OFF.

Delay=A + B*rand(1). Triggers til reset ar hits max retries. Blockage slows retries.
|nputs and constants: Outputs to Data Baszes:

[term; Wal dssigned: | lbem:

RCY freset latch QuiezContral. Trg Triooer autout QuiezContral. Trg
Maode [0-2] 1 | atched chanaoes QuiezContral. Latch
A fiwed delay. sec Imane QuiezContral.lrng

B random delay. sec 10 Timer QuiezContral. Tror

b ax retries [hlank=forewverl| 3 B ety counter QuiezControl. R etriesz
Blockaoe thresh. D=none Blockane counter QuiezContral. Bont
Triooer now H1 LCDO0.Kewl Blockaoe delay factor QuiesContral. Bfactor
Trigoer nove H2 Trigoer end of retries GuiezControl. RetryDone
[nowt #1 LevelCha.Trg

[nout #2 Haurhy. Trigger

[nout #3

[nowk #4

[nout #5

[nout #E W

Figure 74 QuiescentController in ALERT Application

The QuiescentController monitors up to 16 status inputs to see if one or more has changed. If so,
it initiates a transmission by asserting its trigger output. Once it does so, it starts a timer that will timeout
after a delay that is the sum of a fixed delay and a random delay, taken from inputs A and B respectively.
If a change is detected during that delay, the module will arm itself for issuing a new trigger at the end of
that delay but will not assert the trigger until after the delay expires. Once the delay is done, if there was no
change detected before it finished, then the module will issue a trigger immediately upon detecting the next
change. In this application, the ALERT protocol does not provide for a reply from the destination station,
so in this case, the trigger output (QuiesControl.Trg) is routed back to the RCV/reset latch input to fake the
controller into thinking it has had a reply to its transmission so it will not cycle through its usual series of
retries. You can see that the controller is monitoring for a change in tank/reservoir level, and the hourly
trigger. The rainfall tipper is not monitored by this module because it is sent independently by itself to
minimize transmission time.

216

Sample Applications

AP Note #7: CAPTURING LOGGED DATA WITH A PDA

You can use a PDA (Personal Digital Assistant) such as the Dell Axim30, which we used in our
testing, to act as a hand held terminal and to capture logged data dumped from the RUG3. Your PDA must
have a serial port with a serial cable terminated in a DB9 connector; and serial communication software.
For the Dell Axim30, we bought a serial cable, PN 18000S, from www.thesupplynet.com. A cable may be
available from Dell also. We used communication software called vxHpc that we purchased from
Cambridge Computer Corporation at www.cam.com. Before the cable will work, you must be sure to
jumper pins 1,4 and 6 together, and separately, jumper pins 7 and 8 in the RUG3 serial to modular adapter
as shown in the drawing below. We can supply the adapter with the proper jumpers in place.

RUG3 RTU
OQ O:IDII-AUDIO
= 02 G0

.//

P1 or P2 R$232 Cable, PN R3CBL232Mod ®
[) R2-SHIELD-GND 5
= .
R1-RED-RX
N) N meawmen
1
®

DB9 FEMALE to PDA CABLE

Figure 75 Serial Adapter to Dell Axim30

Install the communications software by following the instructions included with the software or
included with your PDA. Then connect the adapter in the figure above to the PDA’s serial cable DB9 male
end and plug the other end into the PDA. Finally, launch the communications software and follow the
procedure below to establish correct communication parameters. This procedure assumes the Dell Axim30
and the vxHpc communications software.

1) Tap ‘Start’, ‘Programs’, ’Communications’, ‘vxHpc’ to launch vxHpc.

2) Tap ‘Add New Session’

3) Name the session as you wish.

4) Under ‘Select Comm. Interface’, select ‘Direct Connect-Async.

5) Tap the ‘Async. Comm.” Tab

6) Under ‘Select a Port, select ‘Serial Cable on COM1’

7) Tap ‘Configure’ and select 9600 baud, 8§ data bits, None parity, 1 stop bit, and None flow control,
then tap ‘OK’

217

Sample Applications

8)
9)

Tap ‘OK’ to end Session Properties

Tap the name of your new session. Communications should commence immediately. To confirm
communications, press the reset button on the RUG3. The normal “OS Test...OS Test passed”
messages should appear on your PDA’s screen.

To capture a file from the RUG3 once the communications software is confirmed running and
communicating with the RUG3, follow this procedure.

1)
2)
3)

4)
5)

6)

Tap ‘File’, then ‘Capture Text’.

Enter a file name in the ‘Filename’ field.

Select a folder and location. Then tap ‘OK’. We tested with a Secure Digital cartridge as the
location so it could be later removed and inserted into a PC. It also has greater capacity than the
onboard memory.

Trigger the RUG3 to commence dumping of its file.

When the file is finished, tap ‘File’, then ‘Capture Text” and confirm “YES’ to terminate capturing
text.

At this point, your captured file should be present on the PDA.

218

Troubleshooting

CHAPTER 9...TROUBLESHOOTING

Introduction

No matter how well you design your project, its software, and the interfaces to external equipment,
these applications are often complex; and things can go wrong. This chapter attempts to provide assistance
in the form of suggested troubleshooting techniques based on problems users have encountered in the first
few years of RUG3 use. We will first address the use of the RUG3’s primary troubleshooting aid, the
watch window. Following that is a listing of symptoms and possible strategies for isolating and fixing
problems.

Watch Window

After you have compiled and loaded your program into the RUG3, you can use the watch window
to peer inside the databases to observe program internal operation. To use the watch window, be sure your
program is running on the RUG3, then simply click on the watch window button to open the window. The
button is on the upper tool bar and is shown below.

Watch
The watch window should become visible. Then, simply drag variables you wish to observe from the
databases and drop them into the cells in the watch window’s Variable column. Once you do that,
R3SETUP will begin polling the RUG3 once per second for values of your variables, and will place them

to the right of your variable names in the Value column. The figure below presents a typical watch
window observing operation of a running program.

219

Troubleshooting

W atch wWindow

Drag warniable to be watched into a cell in ane of the VARIABLE columns. x Cemes]
Y ariable's value in the BUG3 will be continuously updated in WALUE cell to right. -
Togale poke mode OMAOFF by dauble clicking cell; cell will turn vellow when poke mode B Chr Table

iz active. |n poke mode, value you enter in cell iz poked into RUG3 data base and held _—
until poke mode is turnmed off or RUJG3 rebooted. For statuzes in poke mode, simply E‘ Clr Y alues
click walue cell to toagle status state.

Resendto RTU

VARIABLE [yl UE |
System. B atty 16.02207
System. T empF B3.73418
R elayCycler. Count 4
RTC.5t TUE 03/21/2006 16:45:44
1]

Figure 76 Watch Window

Notice that the watch window enables you to observe statuses, integers, floating point values and strings.
The watch window knows from your compiled program the type of variable you have requested in each
cell, and formats the response it receives from the RUG3 accordingly. Since the watch window relies on
data base addresses to capture data, it is imperative that the program you are running, and the one resident
in R3SETUP be identical. If you have made even a minor change in your program, you should recompile
and reload the program or the watch window could give you erroneous values. In addition, the watch
window data requests are given high priority in the RUG3, which can interfere with other serial
communications.

When you cancel the watch window, it simply stops polling and becomes invisible. If you later
invoke the watch window, it will reappear with the same variables present as previously. Clicking the Clr
Values button will erase all values without affecting the variable choices. The variable values should then
rewrite within one second. If you click the Clr Table button, the watch window will be entirely erased. If
you load a new program, the entire watch window will be cleared inside the RUG3 but can be re-
established by hitting the Resend to RTU button.

Trouble Diagnosis

Basic Operation and Program Loading Problems

Unit Appears Dead

e Power up the unit. Check DC power at the PWR and GND connections. Voltage should be at least
12.0 VDC.

o Ifpower is OK, remove power, connect computer or laptop running R3SETUP and click the terminal
button. Then power up the unit. Unit should indicate that it is testing its operating system (OS). Ifit
indicates that it is waiting for operating system load, it has encountered an operating system error, and
you must reload the operating system.

e Ifunit does not give any message to the serial port, press the reset button to the left of the RUG3’s
program port. The unit should indicate that it is testing its OS. If it does not, check your cable and
reboot your computer, then press the RUG3’s reset button again. If you still get no indication of
activity on the serial port, return the unit to RUGID for repair.

Unit Will Not Respond to Program Load

e While power is applied to the unit, press the recessed reset button next to the programming port. The
unit should respond with its welcome message. If you get no message, remove power from unit, then,

220

Troubleshooting

immediately after you reapply power, repetitively punch the recessed reset button for 5 seconds. If you
still get no message, return the unit to RUGID for repair.

Program Appears to Load But Will Not Run

e Operating system in RUG3 may be incompatible with R3SETUP revision. Try reloading the operating
system into the RUGS3, then reload the program. If after loading, program will still not run, try loading
and running one of the RUGID supplied programs such as ‘R3Burnin’. If RUGID program runs, there
may be an error in your project file. Try deleting sections of the program to isolate the problem. If
RUGID program does not run, your RUG3 hardware may be defective.

Realtime Clock Will Not Keep Time
e The realtime clock/calendar should be accurate to two minutes per month. If it is outside that range, or
is presenting random values, return your unit to RUGID for repair.

Unit Loses Time or Data During Power Outages

e The onboard lithium battery along with other components should retain the realtime clock/calendar and
all RAM contents for outages of up to two years cumulative time. Replace the lithium battery with
type CR2032. If the problem persists, return the unit to RUGID for repair.

Unit Loses Operating System

e Unit operating system and user configuration files are held in flash memory, which does not require
battery power. If the unit experiences a power transient during loading of either the operating system,
or configuration file, then the operating system could be corrupted. If the loss of operating system is
unrelated to such loading events, then the flash memory could be defective.

Unit Stalls and Must Be Powered Down and Re-powered to Run

e Stalling is usually caused by local transients from switched inductive loads such as starters, relays,
motors and solenoids. The RUG3’s isolation and voltage clamping should block most transients that
might try to come in through I/0. However, DC connections to the RUG3 provide a path for transients
to get into the unit. Check that local inductive loads have snubbers installed, and that wiring to any
switched AC loads does not run in parallel with any DC connections to the RUG3.

e The onboard watchdog timer should restart the program if the program hangs up for more than two
seconds. If it is doing this repetitively, then there may be a problem with your application program or
with the loaded OS. Try installing an earlier OS and then installing your program.

Unit Resets Occasionally

e Resetting is usually caused by local transients from switched inductive loads such as starters, relays,
motors and solenoids. The RUG3’s isolation and voltage clamping should block most transients that
might try to come in through I/0. However, DC connections to the RUG3 provide a path for transients
to get into the unit. Check that local inductive loads have snubbers installed, and that wiring to any
switched AC loads does not run in parallel with any DC connections to the RUGS3.

e Unit could be spending too much time on some software task. Try deleting recently added modules to
solve problem.

LCD Display and Keyboard Problems

Contrast is Too Dark or Too Light

e LCD contrast is controlled by the RUG3’s CPU and is affected by component values and voltages on
the board. If you can read the LCD, you can set the contrast from the LCD unit’s keyboard.
Otherwise, you must use the terminal window in R3SETUP. To set LCD contrast, press the [-, minus]
key and then key [7] to initiate contrast setting. You will be prompted to enter a new contrast setting
in the range of 0 to 255. Numbers in the range of 120 to 140 usually work. If you cannot obtain
acceptable contrast, return the unit to RUGID for repair.

221

Troubleshooting

Contrast Changes When Nearby Equipment Powers On/Off

Nearby equipment could be causing surges or sags in main power to the RUG3, causing regulators to
be unable to maintain clean power to the LCD controller. Check that main power to the RUG3 is 12
VDC.

Display Has a Line of Dark Blocks on the Top Line

Remove power, connect computer or laptop running R3SETUP and click the terminal button. Then
power up the unit. Unit should indicate that it is testing its operating system (OS). If it indicates that it
is waiting for operating system load, it has encountered an operating system error, and you must reload
the operating system.

Check to be sure that your program has a display defined for the LCD port, port 0.

Keystrokes on Keyboard Get No Response

Check to be sure that the keyboard ribbon cable is inserted all the way into the keyboard connector on
the RUG3 board.
Check to be sure that your program has a display defined for the LCD port, port 0.

/O Problems

Analog Input is Inaccurate (4-20 ma)

Check that the AnalogInput module you are using for the channel in question is set for the type of
instrument you are using (4-20 ma. or 0-5V), and that its offset and span settings are proper for the
measurement you are making. If they appear correct, disconnect the transducer from the channel in
question, apply power, and with an ohmmeter, measure the resistance from the analog input channel in
question to the GND terminal on the analog input screw header. If you are using 4-20 ma., it should
read within 2 ohms of 221 ohms. If the channel is set for 0-5V operation, the input resistance should
be about 20K ohms. If the resistance is out of this range, or, if none of these conditions exists, return
the board to RUGID for repair.

Check that another analog input on this same board is not out of range of 0.0 to 23.0 ma., or 0-5VDC
An input voltage out of range can affect other channels.

If the low pass filter time constant is long, the measurement will take a long time to settle to an
accurate value.

Battery Voltage or Temperature Measurement is Inaccurate

Battery voltage and temperature are calibrated at the factory during unit testing along with the rest of
the analog inputs. Make sure that other analog inputs are not applying voltages outside the range of 0-
5V at the RUG3’s analog input terminals. If they are in range, the unit should be returned to RUGID
for retesting.

Board temperature measurement measures the temperature inside the case. It will normally read
higher than ambient temperature due to heating inside the case. If it appears out of range, return to
RUGID for repair.

Relay Output Will Not Turn On

Make sure that the power supply voltage applied to the RUG3 is at least 10.5 VDC. Relays may not
pull in below that voltage.

The relay output must be driven by a digital output module, and that module must be driven by a
variable from the status database. If that signal has not been routed to the relay output module, or if it
is not changing state as expected, then the relay output will appear to be inoperative. If the module is
driven correctly, then return the unit to RUGID for repair.

222

Troubleshooting

DC Digital Input Does Not Correctly Sense Input

e Be sure that you are using a Digital Input DC type module to sense the digital input. The RUG3’s
digital inputs are designed to operate from dry contacts or logic in the range of 0-4 VDC to 0-12 VDC,
with a threshold of 1.5 volts. When your signal is turned on, be sure that the voltage across the digital
input is below 1.5 VDC.

Communications Problems

Modem Keys Continuously
e Make sure that you have a ComSetup module in your project referencing the modem port, port 2.
Also, make sure that the ComSetup module has actually been triggered before the transmission.

Modem Will Not Key Radio

e Make sure that you have a ComSetup module in your project referencing the modem port, port 2.
Also, make sure that the ComSetup module has actually been triggered before the transmission.

e Make sure that the Poll module is being triggered.

e Make sure that the program has a transmit array for the port and destination referenced in the poll
module.

e Make sure that the transmit array referenced by the poll has at least the number of words defined as are
requested in the poll.

Modem Receives But Will Not Transmit Reply
e Make sure that the transmit array referenced by the poll exists and has at least the number of words
defined as are requested in the poll.

Modem Keys But Will Not Transmit

e Make sure that the transmit array referenced by the poll exists and has at least the number of words
defined as are requested in the poll, and that it is defined for the correct port and address.

e Use stereo headphones to listen to the transmission. Connect them to the headphone jack to the left of
the modem audio connection on the RUG3’s serial connection panel. You should hear the
transmission in one ear and any reception in the other ear. If no signal is present, or the signal is
distorted, return the unit to RUGID for repair. If the signal is low in amplitude, adjust transmit
amplitude in the ComSetup module to increase signal level.

Modem Transmits But Other Receiver Will Not Accept Message

e Use stereo headphones to listen to the transmission. Connect them to the headphone jack to the left of
the modem audio connection on the RUG3’s serial connection panel. You should hear the
transmission in one ear and any reception in the other ear. If no signal is present, or the signal is
distorted, return the unit to RUGID for repair. If the signal is low in amplitude, adjust transmit
amplitude in the ComSetup module to increase signal level.

e Make sure that both the transmitting unit and the destination unit have matching ComSetup input
properties and that their addresses are correct.

e Make sure that the number of transmitted words does not exceed the array size of the destination
station.

o Make sure that the ComSetup transmit delay is long enough. For phone lines, use a delay of at least
1.5 seconds. For radios, use 1.5 seconds. Shorter times may work, but be conservative.

Modem Receiver Will Not Accept Message

e Make sure that the ComSetup module has been triggered to install channel parameters before the
transmission comes in.

223

Troubleshooting

Make sure that the sending unit’s ComSetup transmit delay is long enough. For phone lines, use a
delay of at least 1.5 seconds. For radios, use 1.5 seconds. Shorter times may work, but be
conservative.

Use stereo headphones to listen to the transmission. Connect them to the headphone jack to the left of
the modem audio connection on the RUG3’s serial connection panel. You should hear the
transmission in one ear and any reception in the other ear. If no signal is present, or the signal is
distorted, problem could be in the channel or in the transmitter at the other end.

RS232 Port Will Not Respond to Modbus Messages

Verify that the ComSetup module has been installed for the port you are using, and that it is
configured for Modbus use (Modbus slave mode, RS232, correct baud, parity, etc.). Make sure that
the address installed in ComSetup matches the slave address your Modbus master is polling.

Some PC’s require that control signals be defaulted true for operation. You can assure that they are
true by jumpering pins 1,4 and 6 together, and by jumpering pins 7 and 8 together on the DB9
connector.

Make sure that the RUG3 transmit and receive arrays are configured for the board and port you are
using. If you are using the modem’s RS232 port, you should be using port 2

Make sure that you are using source and destination addresses of 255 in the array setups. Modbus
masters have no address.

If you are sure that your setup is correct, use the MODBUS.EXE program to test the setup. Contact
RUGID for assistance.

Other Unit Only Receives Part of Transmitted Data

If this unit is polling, make sure the poll module specifies the correct beginning register and enough
registers to be transferred to the destination.

If this unit is responding to another poll, make sure that the polling unit is requesting the correct
starting register and number of registers to be transferred.

This Unit Only Receives Part of Transmitted Data

If this unit is polling, make sure the poll module specifies the correct beginning register and enough
registers to be transferred from the destination.

If this unit is responding to another poll, make sure that the polling unit’s poll module is requesting the
correct starting register and number of registers to be transferred.

Receive Array Has Wild Numbers

If the unit has not yet received a message, the receive array will have undetermined values. This is
normal. You must wait for a reception.

If the unit has received a message, the received message may not have addressed the registers in
question. If this unit is polling, make sure the poll module specifies the correct beginning register and
enough registers to be transferred from the destination.

If this unit is responding to another poll, make sure that the polling unit’s poll module is requesting the
correct starting register and number of registers to be transferred.

Unit Resets With Each Transmission

If the unit is powered by the same source as a radio, the power source may not be able to source both
the RUG3 and the radio when it transmits.

224

Troubleshooting
Data Logging Problems

Unit Will Not Log As Many Points As Logger Setup Specifies

e The log must hold both data samples and time tags. Each takes one word (4 bytes) of storage. The
inclusion of time tags will use up some of the loggers data space. You must either log time tags less
frequently or increase the size of the log.

Log Contains Lots of Wild Numbers

o Ifthe log has been just installed, or has had its size changed, the compiler probably has moved the log
so it is pointing to uninitialized memory. You must trigger the data logger’s reset input to erase the
log, or wait for samples to replace the erroneous data.

Module Problems

Cannot See Triggers on Watch Window

e Triggers are only on for one scan, so may be too short for watch window to capture. Try capturing the
trigger with either a FlipFlop module or an OrGateLatch module, or a Counter module, then display
that.

Flow Totalizer Records Flow When None Is Present

e Flow transducer or analog input may be indicating slight positive flow when none is present. If you
are using one of the flow math modules, set the low flow dropout to a small positive value. Otherwise,
run the flow value through the FlowConvert module and implement the low flow dropout there.

Pulse to Flow Module Does Not Work

e Make sure the pulse to flow module’s trigger input is being triggered.

e Make sure that you have assigned a DICount module to the digital input that you are using to capture
the flow pulses. Remember, the pulse to flow module works from pulse count per unit time, not pulse
duration.

Setpoint Has Wild Numbers
e Setpoints are in uninitialized RAM, so they will assume random values until set by hand, or set by
triggering their default inputs.

225

Warranty, Dimensions, Specifications

CHAPTER 10... WARRANTY, DIMENSIONS, SPECIFICATIONS

Warranty

RUGID COMPUTER, Inc. warrants that equipment manufactured and sold by us is free from defects in
material and workmanship. Under this warranty, our obligation is limited to repairing or replacing, at our option,
any equipment or parts returned, shipping prepaid and properly packed, to our plant and proving to be defective by
our inspection within one year after sale to the original purchaser. This warranty shall not apply to equipment or
parts thereof which are normally consumed in operation, or to any equipment which shall have been repaired or
altered in any way outside our plant, so as to, in the judgment of RUGID COMPUTER, Inc., effect its stability,
accuracy, or reliability, nor which has been operated in a manner or environment exceeding its specifications, nor
which has been damaged, altered, defaced, or has had its serial number removed or altered. Under no circumstances
shall RUGID COMPUTER, Inc. be liable for any loss or damage, direct, incidental or consequential, arising out of
the use, misuse, or inability to use, this product. The liability of RUGID COMPUTER, Inc. shall not exceed the
original purchase price of this product.

Return/Repair Policy

Specific warranty provisions are stated in the warranty section above. Under no circumstances are products
returnable for credit. If a product is found to have failed, it must be returned to the factory for repair or replacement.
The determination of whether to repair or replace the product is made by us after a period of testing. If it cannot be
brought up to full operation with full certainty, it will be replaced. When repaired under warranty, we will return the
repaired product using the same freight class as it was received no charge. We will make every effort to ship within
24 hours of receipt. The determination of whether a product’s repair or replacement is covered under warranty will
also be made by us. We give the benefit of the doubt to the customer in this determination. However, if there is any
indication of physical damage, alteration, or misapplication of the product, then the repair will not be covered by the
warranty.

It is in your best interest to accurately assess and report the circumstances of a failure. One of the most
difficult determinations to make is whether a product has suffered over voltage stress in the field. If it has, the
product can fail at sometime after being repaired and declared operational due to failure of a component that was
stressed but did not reveal itself during testing. Also, any failure related information you can give us along with the
product can reduce the time it takes to find the defective components. Therefore, it could save you money.

227

Warranty, Dimensions, Specifications

T E—
=
|-
1 RUG3 RTU
OBEEBO0BEBaNn N
o7 ool N
! N N N R R N A III\"IlI
i ——— 7X35mm Din Rail Slot

Figure 77 RUG3C/D Dimensions

228

Warranty, Dimensions, Specifications

< - | - 600' >
l* 460" >
A ~ ™
e 130" >
A A
=T
nl .

Beafu | ~6-3 Stud

Ak RUG3 RTU 1

|
oaaBanoeEan
ol 7l foffofl v

473"

-2.35"

7X35mm Din Rail Slot ——

0.32 7' « 5.38" >

Figure 78 RUG3P Dimensions

229

Warranty, Dimensions, Specifications

b 6.00" >
« 4875 >
i 7 o i SRS RERSNTNES ARATES AT RN SRR SRS SRR iy
I |
|
—
| |
| |
| |
| |
| |
| |
N | |
2 ru:ma?[m o1brsHo
o ole ole
| |
| > | 025 |
| . |
[& '
| |
| |
| |
v s
i | |
= | |
v N i i | [.y | J
0.32"» < 5.38" >

2.35"

Figure 79 RUG3 Panel Mount Cutout Dimensions

230

Warranty, Dimensions, Specifications

LOGIC FAMILY
All low power CMOS
MICROCONTROLLER

16-bit MSP430, 8 Mhz, 16 bit data bus,

16 bit address bus
MEMORY

RUG3 SPECIFICATION

DIGITAL OUTPUTS

4 ch, 10 amp relays or 0.5 amp/48V
SSR’s. Pulse Duration Outputs-Relays
can generate pulse width modulated or
one shot signals with 4 ms res.

ANEMOMETER INPUT

RAM-2 Kbytes battery backed I#y[6 connected to clipping amp, counted to

power static RAM
Program Flash-60 Kbytes
Logging Flash-2 Mbytes

derive wind speed
REFERENCE OUTPUT

Battery Backup-Onboard lithium By DC reference available to power

cell backs up RAM & realtime
clock/calendar min 2 years
DISPLAY

potentiometers, shares pin with

DIS.
INSTRUMENT POWER

2 line X 16 char backlit LCD, S‘EB%}S supply switchable to 24 VDC or

readable, backlight switchable by
software

KEYBOARD
16 key sealed tactile membrane with
interrupt scanning

REALTIME CLOCK/CALENDAR
Battery backed clock/calendar 0.005%
crystal accuracy

OPERATION SECURITY

Watchdog Timer-Hardware timer resets
unit 0.5 sec. after interrupt fail. Cannot

bedisabled.
Telemetry Watchdog-Resets rcv buffer
if no character received within 1 sec.
Brownout Detector-Halts process if
logic voltage falls below 2.7 V, restarts
when voltage rises to 3 V
AUTOBOOTING
Auto startup on power application.
Automatic OS test and user program
test must pass before program will
start. Retries every 60 sec.
1/0 SURGE PROTECTION
All 1/O is resistor isolated, meets IEEE
surge protection rqmts.
ANALOG INPUTS
6 chan, 12 bit res., successive approx,
Individually switchable as 4-20 ma or
0-5 v. Factory calibrated.
ANALOG OUTPUTS
2 chan optional, 12 bit resolution,
optically isolated. Factory calibrated.
DIGITAL INPUTS
Status- 8 chan, dry contact compatible,
self powered
Pulse Counting-all DI count 128 PPS
Pulse Duration Detecting-all can
convert pulses to analog with 4ms
resolution
Shaft Encoder-DI’s in pairs used to
decode shaft encoders

battery voltage and can be
switched on/off by software.
SERIAL PORTS-2 Standard RS232
One programming/gen purpose port plus
one gen purpose RS232 port
MODEM-Optional

Bell 103 standard/ALERT standard
Radio Interface

4-wire audio, adj. gain, xformer
isolated, optically isolated key line.
Low tones mode for splinter chan.
Phone Line Interface

4 wire audio adjustable gain,
transformer isolated

Transmit power 0-4Vp-p, software
adjustable in 32 steps

COMMUNICATIONS

ASCII std,

RUGY Background CRC gen/decode,
variable length messages, user defined
message lengths. Can combine status,
integer, float, in any message.

ALERT protocol-standard

Modbus RTU slave or master
ModbusTCP slave or master.

RUG®6 protocol-standard

Eavesdrop Mode-R9 protocol, any
RTU can accept data passing between
any other stations

Peer to Peer- Full RTU to RTU or RTU
to master or master to RTU messaging
Store and Forward- Initiating station
sets path through up to 3 intermediary
stations

Address Range-1 to 254, 1-65535.

POWER INTERFACE

12 VDC +/-20%, diode isolated. 2.8
ma normal operation (loop supply and
relays off) to 440 ma. max.

231

LOOP SUPPLY
Builtin switchable regulated 24 VDC
+/- 5%, 120 ma.
1I/0 CONNECTIONS
All I/O uses removable rising cage
screw headers in banks of up to 10
each, 14 ga wire. RS232 and Modem
signals use 3.5 mm jack
SOFTWARE
Storage-operating system, calibration,
and all user configuration and
programming stored in nonvolatile
flash memory. Flash loader stored in
flash protected boot block.
Security-memory integrity test on boot
up, CRC gen/detect on serial ports.
Program loading CRC protected.
Scanning-Built in software scans all
I/0O, ports, timers, realtime clock
PROGRAMMING
Modules-applications use precompiled
modules resident in flash memory
where programmer interconnects
modules and sets properties using
supplied Windows program. No
procedural programming required for
most applications.
LADDER LOGIC
Ladder logic is built in to the Windows
configuration program to handle misc
controls
DATA LOGGING
Logs floating point, integer and status
samples with time tags to onboard flash
eeprom. 2 Mbytes. Can dump logs to
serial port as comma delimited ASCII
or R9 protocol CRC-secured binary.
VARIABLES
Supports 16 bit integer, 32 bit floating
point, boolean, strings.
ERROR MESSAGES
Configuration program handles all
setup errors. Run time software is self
protecting... no run time errors.
ENCLOSURE
16 ga. steel, blue powder coat DIN rail
mountable.
Case: 4.5X3.5X 1.3 1n.
Panel mount flange 6.0 X 4.7 In.
TEMPERATURE RANGE
-40 to +85 deg. C logic
-20 to +60 C LCD display
DOCUMENTATION
240 page manual on CD
WARRANTY
1 year std limited warranty
REPAIR
Nominal 24 hr turnaround

Index

INDEX
A
Absolute value module...........ccoecvvvienvenirnnnnnne. 97
AcqUuiSition timecceeeveevervenieereeeiesnenenn 178
AGA3 Moduleooveeeieieieecee e 85
AlarmHILO ..o 99
AlarmHiLo moduleccooeiviiiiiniieciiee. 99
ALERT ..ottt 161, 181
Analog Input.........cceviinnennen. 24,46, 73, 74,222
Analog inputs 21, 46,47, 73,199, 222
Analog output.......cocceveeiiienieieeees 49,74
ANalog outPULSeeveeiieiecieie e 49,74
ANDgate module........c.ccevveriieeiincienieieenenns 100
ANCMOMELET ..ottt 74
Anemometer moduleccoccvvieniiniinieene 74
ATTAY SETUP .eeeniveeiiieieeieeeite et 182
ASC USET .ttt 148
AvgValue module..........ccooeviniiiiiiieieee, 143
B
Backlightcoccoooieiniiienns 14,42, 82,199, 231
BackspinTimer modulecccoceveevieriennn. 100
Battery

changing on CPU........ccccccveevviiiiienieiee, 43

CPU .t 43,221
Battery changing............cccoevvvevenieneecieneennenne. 43
Battery,changing...........ccccoecvevenveneeceniennnee. 43
Baud rate 42,48, 148,149, 178, 181, 206
BitsToNumeric modulecccccevverienerennnnne. &3
Block diagram, RUG3cccooiiiiieiiee 39
Broadcast........ccccveeiiieniieieeee e 176
C
Card CaZE.....eeueeeeenieiieee e 228
Card configuration...........ccceeevereececesienieneenne. 19
CFS.iiieieeeee, 85, 86, 87, 88, 89, 146
ClearMemory module...........ccceevievvieieniennnnns 101
Clone buttonccevveveeriereeiecee e 62
Com Port on PC.......oooviiiiiiiiiiiiiiiiiieee 69
Common logarithm...........ccccoeeereiirienieree, 97
Communications.............coeveeeeevveeeerneeenns 175,231
Compile button.........cocceeveeeeereenrene 34, 55, 66
Compiling project.......cceeveeeerverveceeiennenns 34, 66

ComSetup module42, 48, 65, 148, 149, 159, 163,
169, 181, 182, 185, 205, 206, 207, 215, 223,
224

ComWatch module.........c.ccooeeevieciieiinienne, 150
Connecting PC to RUG3ccccovevieienienn, 15
CONSLANT.....eeviiieeiieeiieeiie ettt 83
Constant module.........cccceveeeevcieiienieieie e, 83
COSINE ... eiieeieiieiieiteie et ee e 84
Cosine module.........ccevveriierieriieiierieeeeee e 84
Counter module............... 100, 101, 102, 131, 225
CounterUpDNRolloVer..........cccoovevveienienene 102
CounterUpDnRollover module....................... 102

233

CPUDO0Ardooeeeeveieceieeeeeeeeeeeee e 221

CR2032..eiieeieeeeeeeee e 43,221

CRC...66, 68, 148, 151, 158, 159, 165, 175, 188,
189, 190, 191, 192, 194, 195, 196, 206, 231

CycleDisplay moduleccccoeveviirieneenne 150
D
Data tyPes ...cooveeeeeieeieeeee e 72
DatabasesS........coovvvveeiieiiiiiieeeee e 24, 57
Deadband module..................... 95,103, 138, 141
DelayTimer module..........c.coocevineniniiennne 103
Diagnostics modulecccecvevverienieenieennenne. 101
Digi One Real Portccoeeevvvvevierieieenne, 212
DiginCount moduleccccvecvrrerennene 44,75, 79
Digital Alarm Output module..................... 45,76
Digital Input DC module.................... 44,76, 223
Digital INputsoccvveeeeierieieeeeee e 44
Digital Output module....... 22,29, 30, 45, 77, 199
Digital outputs................... 22,29, 30, 45,77, 199
DIMENSIONSo.eeveeeeiieiieieiesiese et 37
Display
data fields......cccoovereniiicieeeeee 171
ENLETING TEX L euvieriereeiiesieieeee e 170
NAMINE .e.vveeeveeereeeresteeteesreereeaeseesseesseeseens 169
NUMDEIING.....covieeveiieriierieere e see e 169
POt aSSIGNMENL.......veeeeerereeiieieeeeeneeeeeans 169
SAVING....vieniiereeiieeieesieeeeeneeeeeeseeenteeeeennesnnes 171
SClECHING ..e.vieneieiie e 167
Display Interface.........cccoeceveerieieeneeeeeee. 42
Display List.....cceeeerieriieiieieeeseeee e 17
Display triggerccoeoueveereeieeeieseee e 170
Displays, aCCeSSING.....ccverereriririeieieieienans 17
Document buttonccoeevvvvevvveeeiiineeens 55,68
Documentation generator..............cceeveeeveenenen. 69
DumpLogToPort module........................ 151, 152
E
Encoder.......coooeioeeeeeeeeeeee e 55,231
EORGEAte ..c..eeviiiiiieieeeeeeeee 104
Ethernet communicationsccc.cceruvennenne. 181
EventFIFOQueue...........coeevveeviieeieecieeeiens 105
EventFIFOQueue module.............ccccvvenennne 105
EventLogger module 106, 107, 108, 191, 192
EventLogSetup module 106, 108, 151
Exponential module............ccceevvevrieiieiinnnennen. 97
F
File pathsccccocoveiieiiieenceeeee e 70
Flash Mmemoryc.cccceeeveeienienieieeieeee e, 43
Flash requirementccoeeverveneenieeniennenenn. 66
FlipFlop modulecccoevvevevierrennnee. 109, 225
FlipFlopRS module.......c.ccceovveviriirieienne 109
FlipFlopRS Module.......c.cccvevveverienieeene 109
FloatTolnteger modulecccooeeivenrnnnnnee. 84
FIOWAGAS ..ot 85

Index

FlowCipolletiRect module..............cccocverurennnnne. 85
FlowContainer module..........c.c.ccoveeeveeevieenenn. 86
FlowConvert module.............ccceeeeeenneeennn. 87,225
FlowHFIlume module.............ccccoevvieiiiiiiinnen, 87
FlowPalmerBowlus modulec.cccveennnenne. 88
FlowParshall module.............c...cocoveieiinenn... 88
FlowQ=A*(H+B)**C module..........c..c.cc......... 89
FlowTrapezFlume module.............cccocvrernene 89
Forwardingccocevevineninciceieee, 158, 180
Function codes, Modbus.............cocoveeeinvreennn. 159
G
Get User Value modulecooeuvernnneen. 77, 81
GetStrFromPort modulecocoeeviiennennn.. 153
GetUserValue module............cccceeeeveeennee. 77, 81
GlobalRTC ..o 188
GPM ... 79, 85, 86, 87, 88, 89, 146
GPS..oooeeeeeeee e 85, 87, 88, 89, 146
H
HOA module................... 110, 115, 132, 178, 202
HOA2 moduleccooovvvveeiieeiieiieeee, 110, 202
1
[/O asSignmentscceceeveenienenenceceieeeene 20
I/0 configurationccccceeveevieeeieceeeeeseenenn, 55
IndexValueSave.........ccccoevvveeiiiinecciicceeenn 111
Intrusion module...........coovvviviveniriinnnenne 111,112
K
Key Signal......cccveieeieniieieeiececeeeee e 48
Keyboardcccoevvviivieieieee, 42,221,222
L
Ladder coil delayscccceveeveeiieinieeeee 173
Ladder 10ZiC......cevueeieieiieiieeee e 172
LatchFloat module............cccooovviiiiieiiiieenen. 112
LatchInt moduleccoooovveviiiiiiiieiicceeene. 113
LatchOnBitChange module...........c..cceevenenn. 114
LatchString module..........ccccovvevviecienieniiennnns 114
LCD

SEEUD cevveeiteeetee sttt ettt e 31

variable specification.................... 33,171,200
LCD contrast 15,16,17, 19, 82,221
LCD contrast, adjusting..........ccceceeveeecereennenne 19
LCD normal/reverse toggleccccceeuee. 16, 17
Lead Lag Sequencer module .. 115, 201, 202, 203
LeadLagSeq4 module............. 115, 201, 202, 203
Limit module.........ocooeeviiiiiiiiiiiceecceeee 90
List errors buttoncccceevveeeveeecveeeieeecveeenneenn 55
Loading project.......cccevvereereeeceereereeneeneeeneenns 55

LogMany module .. 143, 151, 191, 192, 193, 194,
195

Log-0ff .o 16, 17
LOg-0n oo 16,17
LOog-0n tiMeT.....covieieeieeieiieie e 17,18

234

LookupSwitch module...........ccoeeevvvvenniennnnne, 116
Loop supply.....cceuee 14, 44, 46, 49, 78, 82, 231
Loop SUpply c.eceeveieiieeeeeeeee e 44

Low flow dropout.... 74, 85, 87, 88, 89, 145, 146,
225

LowPassFilter module.............cccccooeeiieenn... 90
M

MasklInteger module.........ccooeevieiiniiiieneenen. 91
Math modules, general purpose.................. 83,97
Maxvalue moduleccoooeeiiviieiiiiiieeien, 144
MB mastercccoueeieeiiieecieeeeeeee e 148
MB SIaVe......ooeoviieiiieieeeeeeeeceeee e 148
MB SIAVE2......eviiiiiiieieeeeeeeeeeeee e 148
MGD....covieiieieeeeeeee 85, 87, 88, 89, 146
MinValue module............coovvveeeeivereeeneeeenee. 145
MismatchLatch..........cccooeoeveeiieiiiiieeeeeeee. 116
Mismatchlatch module 116, 201, 202, 204
MismatchLatch module........... 116, 201, 202, 204
Modbus......c.ccovvveerieenenns 148, 159, 181, 224, 231
Modbus TCP......ccccoeevvveerieceeenen, 148, 159, 181
Modem board......37, 48, 170, 182, 212, 223, 231
Module INPULS......cceerrierieiieeieeieeeeie e 61

Module library24, 25, 31, 58, 59, 64, 167, 172
Modules

INLErCONNECHING ..oovvvevvreeveeereeererieeieenreeene 27,60
Modules in Project........cceevvereereeerrerreseereeenen 24
Modules, interconnectingc.eeu.e.... 27, 60
Modules, liStingcccecvecerrierienieieesieeee e 61
Multiplier in TLM arraycccceeveeeeneennenne. 185
N
Natural logarithm...........ccooceeiiiiininiieee, 97
N-th Order Polynomial module........................ 94
NumericToBits moduleccccoveevieveennenen. 92
NumericToString module...........ccceevveevernnnnen. 92
o
OffDelay module........cccoevveevieieiienieieenene, 117
ONDREIAYeevieieeiieieiieie e 117
OnDelay module.........cccoeevveievienieieeeee, 117
Operating system loadingcccecvvvererenen. 15
Optical iS0lation.........cceceeveerierierienieneene 45,221
OR Gate module.........cocveevieercrieniieiieeeieens 118
P
PackValues modulecccoeevnvrennnns 93,98, 99
Palmer-Bowluscccceeviienieiiiieiecieeee 88
ParseStr module.........ccoeevvieiieciiiiiiieneene, 153
ParseString module.........cccoeevvveierierienieennnne, 154
ParseStringToFloat module..............c.c..c........ 155
ParseStringTolnt module.........c...ccovvevennnnee. 156
ParseStringToStatus module.......................... 157
Parshallcccoovieiiieiieeeee e 88
Peer to Peer...ccueevveeviiiiieieeeen 176,231
PID module........ccoveevveveeieiieeenne. 119, 120, 121

Index

Poke module.........ccovveeviiiiiiiiiieee 121
PokeMany module..........cccocvevvieiiiiiniiniieienns 122
Poll module............... 14, 158, 159, 163, 179, 223
PollMobus moduleccceeeeveiiieeniieiieennnen. 159
PollModbus module..........c.ccccereerienriiireennen. 159
Polynomialcccooiieiiiiiiie 94
Port assignments...........cccceveereerieiienienceees 170
POrt SEtUP ...ooveeeeeeeee e 181
Power module.........ccoooeveeviieiiiiiiieeeceeeee, 97
Power, applying........coceeveveenienieiinieneens 14, 40
PulseDurationIn module..............cccveeenne.e. 44,78
PulseDurationOut module..............c............ 45,78
PulseGen.......ooovvveeveiieiieeeeeeeeeeeeee 122,123
PulseGen module...........ccoovvveeeiveeennnen.n. 122,123
PulseGenFast module............cccooveeeiiiineennen.. 123
PulseToFlow module.............ccooeeeenerennn... 75,79
PumpDnCtrl module...........ccooceeiiiiiiiieee 124
PumpUpCtrl module............... 124,201, 202, 203
PumpUpDn module.........cccoeueeee. 125,202, 203
0

Quiescent........ 114, 160, 163, 176, 178, 181, 215
QuiescentController module........... 160, 215,216
R

R3SETUPDI1, 13, 15, 16, 18, 19, 34, 53, 54, 60,
66, 67, 68,70, 71, 167, 169, 175, 219, 220,
221,222

RAM requirement..........ccveeeeeeereeeneeeneeeneeeneenns 66
Random number generatorcccocvererennenne. 97
RateofChange modulecccooveiieiininnncnn. 126
ReadRTC module.........ccceeeiiiinieieieeee 126
Real POrt.....c.eoieieieieeceee e, 212
Realtime clock/calendar

SEHHING .ot 15, 16, 17
Reassign RAM buttoncccceeevveevieieneeennnnnn, 55
RECEIVE AITAYoeveeieeieee e 185
Relay OUutputscccveeveeieeieniereeeeie e 45
Repair POliCY ..cvvveveeieeieeieceeeec e 227
Report by exception..........ccceevereierireieneennnnns 176
ReEPOTLS oo 167, 168
Reset button.......coceeeeveenieriiececeee 42

RS232 14, 15, 42, 43, 48, 65, 138, 148, 149, 150,
158, 170, 175, 206, 224, 231

RSA8S e 48
RUGS®6 protocolc.ccvveveeevenneenen. 148, 181, 231
RUG9 protocolc.ccceeevvnnene 148, 158, 176, 181
RUG9 TLM format.........cccccvevureveererienreannenns 188
S

SavINg Project....c.ccceervvereerrerceereereerreevennns 34,55
Searching for database variable usage........ 62,63
Send Pgm buttonccoeeeevvevieiieciieieeiees 66
SendAlertDataccceeveevieeceerieriereee e 161
SendAlertData module 161,214, 215
Sending OS to R3oviiiiiieee 67

235

Sending program to R3.........ccceevvvivveneennnne, 66
Sending RTCto R3.....ccoovevieieiieieeeee 68
SendPgm button...........cccceveeevvenieniieienne, 34,55
SendStrtoPort module........c..coccveeieiiniincnnenn 162
SeqTimedTrigger module...........ccccvvvenennnen. 128
SequencerT2 module..........cocveiieiiiiinnnnen. 127
SequencerTimed module............ccc..... 128,129
SequencerUpDn module..........cccoecuvvernnennen. 129
SequenOutcoccvvevveerieeciieeieeeen. 127,129, 130
SequenPoll module................. 158, 159, 163, 181
Serial POTtS...ccuveevueeerieeieeeiieereeeieeeee e 18
Setpoint MENU.......ccverreerieeireieeiereesieeseeene e 16
Setpoint module....... 18, 25, 26, 59, 80, 103, 120,

199, 207, 225
Setpoints

SEEUD..eeetteetee ettt ettt ee ettt 25
Setpoints, aCCESSINGevvverveerveeireieriereeeenes 18
SetRTC modulecccveeeeieiieiieeeeeeeee, 131
Shaft encoder input module............cccceeene.ne 81
Shaft encoder module...........cccoevvveuvveinnnenn. 44, 81
SINE .t 94
Sine module........ccoooeeiiiiiiiiee, 94
SnapShotCount module............ccoeevevvenneennen. 131
Sorting, control of..........ccceeveviiecieicienieeee, 70
Stopping R3 program............ccccevvevueeruervernnenns 68
Store and forwardc....cocuve... 179, 180, 231
StringSwitch modulec.ccocevceeiennee. 132, 201
StringSwitchByBits module ... 133, 134, 201, 204
StringSwitchPriority module.......................... 133
SuccessiveSampleFilter...........cccoooevineenne 95
SUMMINGACCUM ..covvvenieiiieieeiieeeeeee e 95
SummingAccum moduleccocoeoerieieennne. 95
SyncManyValues module...........c.cccceoenee 134
SyncTORTCcocviieiiiiiieeiieeeeeeee e, 135
SyncToRTC module.........cccoevvvevrerenreirennen. 135
SyncValues module..........cccoevveieeienvenirennen. 134
SYSSELUP et 82

SysSetup module . 18, 24, 44, 46, 65, 80, 82, 148,
199

System menucceeeeveereeeneeneene. 15,16, 17
T

Tables ..cvveeiiieieceeee e 10
Tag TSt 178
Tangent.......ccocceveeiiiiinienieeseeeeeee e 96
Tangent module..........cccooererernnnne. 93, 96, 97, 98
Terminal buttoncccccooeevveveeinenennn. 55,67,212
Toggle module..........cooveviveciinienieieee e, 135
Toggle Modulecccoeveviieciiiieiierieeeee 135
TOOL DAr ..o 54
010 L T 1 USRS 34
TotalizeEvent module...........ccoocvvvievvenirennn. 145
TotalizeFlow module..........ccocvvvevericiieennns 146
TotalizeTime module..........ccccocvveevieicreennens 147
Trapezoidal flume.........c.cceevevieiiierieieeeenen, 89
Trigger Every X Second module.................... 136

Index

TriggerDelay module..........cccccoeevieiinieniennnnns 136
TriggerGen modulecccovveviieiinieniennns 137
TriggerOnChange module.............ccoocverurennenne 137
TriggerOnKeyManyccccceeevenvennnne 138, 139
TriggerOnKeyMany module................... 138, 139
TriggerOnRCV module.......... 164, 165, 205, 206
TriggerOnRTC modulecoocveiniinienns 139
TriggerOnSpecialKeys module 139
TIIZEETS oo 61, 131, 225
TrigOnBitThenClr moduleccceueennene. 140
TrigOnChangeMany module.......................... 141
TrigOnKeyMany module 80, 138, 140
TrigToNumeric module..........c.ccevveriieerennnnne. 96
U

UnPackToFloat module...........cccceceeieiiiennnne. 97
UnPackTolnt module..........cccoocerirenenninicnnenne. 98
LU 14,15, 17,42, 43,70
V

ValueTest module.........ccccuvvveeeeennnn. 60, 141, 142
ValueTestTrig module.........cccoeeieiiieiieninnnnne 142
Volume control.........cccceeeevieiiniinieniinceee 79
w

Waiting for OS load........cccoeevveeienincnenns 15, 67

236

Warrantyccocceevevvevcieeniienieeceeeeeen 227,231
Watch buttonc.ccceeeeviieeiiiiiicie e 68
Watch window................... 55,68, 219, 220, 225
Watchdog timerceeveeeeeriercierieceeeee 221
Web Site....covieeiiiriecieeciieeee 1,11, 13,43,54
WL . 85, 86
Y

Y=A*Bmoduleccooeiviiiiiiiiiieeee. 97
Y=A*B*C*D*E*F*G*H*J module................. 97
Y=A*B+C*D+E*F+G*H module................... 97
Y=A/Bmodulecc.ccovrevvireiiiaiieecrieereennn. 97
Y=A+tB modulec...ccorvviiniriiiierieereennen. 97
Y=A+B*C/D-E module......c...cc.cevurrerrrenern.. 97
Y=A+B*eNX+C) modulececverrvenrenee. 97
Y=A+B*rand(1) module...........cccovrerrrrurrrnnen. 97
Y=A+B+C+D+E+F+G+H module.................. 97
Y=A+B+C+D-E-F-G-H module...................... 97
Y=A-Bmodule............ccooeriiiiiiiiiien. 97
Y=abs(X) modulec..cccverrrirrrerrrerreenreenns 97
Y=log(X) moduleccceveririririnieiaenne 97
Y=log10(X) moduleceocereririrreiaene 97
Y=M*X+B module........c...cooeeverirreiierieereenne. 97
Y=sqrt(X) modulec.cceerverrrrrrererrerrenenn 97
Y=X"Z module........c.coeirvviiniriiiiieerieeeene 97

